The answer is position 3, because it is at its lowest point.
Potential Energy is “stored energy.” It is energy that is ready to be converted or released as another type of energy. We most often think of potential energy as gravitational potential energy. When objects are higher up, they are ready to fall back down. When you stretch an object and it has a tendency to return to its original shape, it is said to have elastic potential energy. Chemical potential energy is the stored energy in a substance’s chemical structure that can be released in a chemical reaction or as heat.
Answer:
The right solution is:
(a) 2.87 eV
(b) 1.4375 eV
Explanation:
Given:
Wavelength,
= 433 nm
Potential difference,
= 1.43 V
Now,
(a)
The energy of photon will be:
E = 
= 
or,
= 
= 
(b)
As we know,
⇒ 
By substituting the values, we get
⇒ 
⇒ 
or,
⇒ 
⇒ 
Work done by a given force is given by

here on sled two forces will do work
1. Applied force by Max
2. Frictional force due to ground
Now by force diagram of sled we can see the angle of force and displacement
work done by Max = 

Now similarly work done by frictional force



Now total work done on sled


Answer:F=4F
Explanation: Columbs law states that The force between the two point charges is directly proportional to the product of charges and inversely proportional to the square of distance between them
Force between the two charges is given by
F=K*q1*q2/r^2
if one charge become 4 times, new force is,
F=4(K*q1*q2)/r^2
F=4F
Where q1 and q2 are the point charges
r is the distance between the two charges
K is a constant of proportion called electrostatic force
Headphones, refrigerator magnets, and compasses
Hope that was helpful.