1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
uranmaximum [27]
3 years ago
9

Please help! I dont get it!

Physics
1 answer:
Irina18 [472]3 years ago
5 0
I know its late  but its <span>B.Temperature plays a greater role in thermohaline circulation than salinity does, since it is the temperature of the ocean interacting with the atmosphere that causes deep sea currents.
</span>
You might be interested in
You're driving down the highway late one night at 22 m/s when a deer steps onto the road 38 m in front of you. Your reaction tim
sleet_krkn [62]

speed of the car is given on the road

v = 22 m/s

reaction time is given as

t = 0.50 s

now we can find the distance that it will move during this reaction time

d_1 = 22* 0.50 = 11 m

now the deceleration of the car is 10 m/s^2

so the distance that it will move before stop is given by

v_f^2 - v_i^2 = 2 a d

0^2 - 22^2 = 2*(-10)*d

d = 24.2 m

so the total distance that it require to stop is given as

d = 24.2 + 11 = 35.2 m

while the deer is standing at distance 38 m

so the car will stop 2.8 m before the position of deer


3 0
3 years ago
What are some examples of pressure
aniked [119]
Squeezing a ball is one
3 0
3 years ago
Based on the soil texture triangle, how much slit is presented in silty clay?
morpeh [17]
B) 20-40 percent
I hope this helps
4 0
3 years ago
A spring gun is made by compressing a spring in a tube and then latching the spring at the compressed position. A 4.97-g pellet
dimaraw [331]

Answer:

v  = 2.8898 \frac{m}{s}

Explanation:

This is a problem easily solve using energy conservation. As there are no non-conservative forces, we know that the energy is conserved.

When the spring is compressed downward, the spring has elastic potential energy. When the spring is relaxed, there is no elastic potential energy, but the pellet will have gained gravitational potential energy and kinetic energy. Lets see what are the terms for each of this.

<h3>Elastic potential energy</h3>

We know that a spring following Hooke's Law has a elastic potential energy:

E_{ep} = \frac{1}{2} k (\Delta x)^2

where \Delta x is the displacement from the relaxed length and k is the spring's constant.

To obtain the spring's constant, we know that Hooke's law states that the force made by the spring is :

\vec{F} = - k \Delta \vec{x}

as we need 9.12 N to compress 4.60 cm, this means:

k = \frac{9.12 \ N}{4.6 \ 10^{-2} \ m}

k = 198.26 \ \frac{ N}{m}

So, the elastic energy of the compressed spring is:

E_{ep} = \frac{1}{2} 198.26 \ \frac{ N}{m} (4.6 \ 10^{-2} \ m)^2

E_{ep} = 0.209759 \ Joules

And when the spring is relaxed, the elastic potential energy will be zero.

<h3>Gravitational potential energy</h3>

To see how much gravitational potential energy will the pellet win, we can use

\Delta E_{gp} = m g \Delta h

where m is the mass of the pellet, g is the acceleration due to gravity and \Delta h is the difference in height.

Taking all this together, the gravitational potential energy when the spring is relaxed will be:

\Delta E_{gp} = 4.97 \ 10^{-3} kg \ 9.8 \frac{m}{s^2} 4.6 \ 10^{-2} m

\Delta E_{gp} = 0.00224 \ Joules

<h3>Kinetic Energy</h3>

We know that the kinetic energy for a mass m moving at speed v is:

E_k = \frac{1}{2} m v^2

so, for the pellet will be

E_k = \frac{1}{2} \ 4.97 \ 10^{-3} kg \ v^2

<h3>All together</h3>

By conservation of energy, we know:

E_{ep} = \Delta E_{gp} + E_k

0.209759 \ Joules = 0.00224 \ Joules + \frac{1}{2} \ 4.97 \ 10^{-3} kg \ v^2

So

\frac{1}{2} \ 4.97 \ 10^{-3} kg \ v^2  = 0.209759 \ Joules - 0.00224 \ Joules

\frac{1}{2} \ 4.97 \ 10^{-3} kg \ v^2  = 0.207519 \ Joules

v  = \sqrt{ \frac{ 0.207519 \ Joules}{ \frac{1}{2} \ 4.97 \ 10^{-3} kg } }

v  = 2.8898 \frac{m}{s}

7 0
3 years ago
Electric fields are vector quantities whose magnitudes are measured in units of volts/meter (V/m). Find the resultant electric f
musickatia [10]

Answer:

Er = 231.76 V/m, 27.23° to the left of E1

Explanation:

To find the resultant electric field, you can use the component method. Where you add the respective x-component and y-component of each vector:

E1:

E_1_x = 0V/m\\E_1_y=100V/m

E2:

Keep in mind that the x component of electric field E2 is directed to the left.

E_2_x= 150V/m*-sin(45) = 106.07 V/m\\E_2_y=150V/m*cos(45) = 106.07V/m

∑x: E_1_x+E_2_x = 0V/m - 106.07V/m = -106.07V/m

∑y: E_1_y + E_2_y = 100V/m + 106.07V/m = 206.07V/m

The magnitud of the resulting electric field can be found using pythagorean theorem. For the direction, we will use trigonometry.

||E_r||= \sqrt{(-106.07V/m)^2+(206.07V/m)^2} = 231.76 V/m\\\\\alpha = arctan(\frac{206.7 V/m}{-106.07 V/m}) = 117.24degrees

or 27.23° to the left of E1.

8 0
3 years ago
Other questions:
  • Are soaps salts true or false
    7·1 answer
  • Element of thunderstorms heavy rain
    13·1 answer
  • If san andreas fault slips 2.5 cm each year how far would it separate in 100 years
    5·1 answer
  • Hey I need help on this please???
    11·1 answer
  • Does DNA produce any particular traits?
    7·1 answer
  • Which of the following distances is the longest?a. 0.006 kilometers
    5·1 answer
  • The part of the computer that provides access to the internet is
    13·1 answer
  • 100 POINTS. PLEASE PROVIDE EXPLANATION
    5·1 answer
  • What is the speed of an object at rest?<br> a. 0.0 m/s<br> c. 9.8 m/s<br> b. 1.0 m/s<br> d. 9.81 m/s
    9·1 answer
  • A 30 ohm resistor and a 20 ohm resistor are
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!