The period of a simple pendulum is given by:

where L is the pendulum length, and g is the gravitational acceleration of the planet. Re-arranging the formula, we get:

(1)
We already know the length of the pendulum, L=1.38 m, however we need to find its period of oscillation.
We know it makes N=441 oscillations in t=1090 s, therefore its frequency is

And its period is the reciprocal of its frequency:

So now we can use eq.(1) to find the gravitational acceleration of the planet:
Answer:
Sonia's grandfather was not able to see clearly after returning from his walk on a bright sunny day. He was about to hit a chair when Sonia held him and guided him to the nearby sofa, in sunny environment grandfather's eye is set according to high brightness, his pupils become small to lower the number of light rays entering his eye, when he returned from sunny environment to his house which was having low brightness so the pupils should enlarge to absorb more light to see clearly but due to old age his Ciliary muscle of the eye would have worn out and due to this poor coordination the image was not clear.
Answer:
80%
Explanation:
Efficiency = Power output / Power input × 100 %
To calculate efficiency we need to find power output of electric pump.
We can use,
Work done = Energy change
Work done per second = Energy change per second
Work done per second = Power
Therefore, Power = Energy change per second
= Change in potential energy of water per second
=mgh / t
= 200× 10×6 / 10
= 1200 W = 1.2 kW
Now use the first equation to find efficiency,
Efficiency =
× 100%
= 80 %
Answer:
Explanation:
initial velocity u = 32.7 m /s
final velocity v = 50.3 m /s
displacement s = 44500 m
acceleration a = ?
v² = u² + 2 a s
50.3² = 32.7² + 2 x a x 44500
2530.09 = 1069.29 + 89000a
a .016 m /s²
time taken t = ?
v = u + at
50.3 = 32.7 + .016 t
t = 1100 s