Answer:
NaNO₃
Explanation:
A precipitate is a compound or a salt formed from a precipitation reaction and does not dissolve in water and therefore will exist in solid state.
From the choices given precipitation reaction will occur between;
- Fe(NO₃)₃(aq) + 3NaOH(aq) → Fe(OH)₃(s) + 3NaNO₃(aq)
- Cu(NO₃)₂(aq) + 2NaOH(aq) → Cu(OH)₂(s) + 2NaNO₃(aq)
- FeSO₄(aq) + 2NaOH(aq) → Fe(OH)₂(s) + Na₂SO₄(aq)
Fe(OH)₃, Cu(OH)₂, and Fe(OH)₂ are precipitates.
From the rules of solubility, hydroxides are insoluble except Ca(OH)₂ which is slightly soluble and hydroxides of ammonium and alkali metals.
Answer:

Explanation:
Hello,
In this case, we can consider that the given heat of combustion is indeed the heat of reaction since it corresponds to the combustion of propane, which is computed by using the heat formation of all the involved species as shown below:

Thus, since the heat of formation of gaseous carbon dioxide is -393.5 kJ/mol, water -241.8 kJ/mol and oxygen 0 kJ/mol, the heat of formation of propane is:

Best regards.
Answer:
3 (three)
Explanation:
2 Fe + 3H2SO4 = Fe2(SO4)3 + 3 H2 (basically just balance both sides)
When we can get Pka for K2HPO4 =6.86 so we can determine the Ka :
when Pka = - ㏒ Ka
6.86 = -㏒ Ka
∴Ka = 1.38 x 10^-7
by using ICE table:
H2PO4- → H+ + HPO4
initial 0.4 m 0 0
change -X +X +X
Equ (0.4-X) X X
when Ka = [H+][HPO4] / [H2PO4-]
by substitution:
1.38 X 10^-7 = X^2 / (0.4-X) by solving for X
∴X = 2.3x 10^-4
∴[H+] = X = 2.3 x 10^-4
∴PH = -㏒[H+]
= -㏒ (2.3 x 10^-4)
∴PH = 3.6
The question is incomplete, the complete question is;
Atom Number of protons Number of electrons Number of neutrons
1 39 39 52
2 40 40 50
3 39 39 54
4 40 40 51
Based on the information that is given, which atom in the table has the highest mass?
a. 1
b. 2
c. 3
d. 4
Answer:
c
Explanation:
The relative atomic mass is given as; number of protons + number of neutrons. If we take the relative atomic mass of each of the options;
1) 39 +52 = 91
2) 40+50 = 90
3) 39 + 54 = 93
4) 40 + 51 = 91
Thus 3 has the highest mass as seen above, hence the answer given.