Answer:
Final Temperature of the steam tank = 456.4°C
Explanation:
Assuming it to be a uniform flow process, kinetic and potential energy to be zero, and work done and heat input to be zero also. We can conclude that,
Enthalpy of the steam in pipe = Internal Energy of the steam in tank
Using the Property tables and Charts - Steam tables,
At Pressure= 1 MPa and Temperature= 300°C,
Enthalpy = 3051.2 kJ/kg
At Pressure= 1 MPa and Internal Energy= 3051.2 kJ/kg,
Temperature = 456.4°C.
Because there's no such thing as "really" moving.
ALL motion is always relative to something.
Here's an example:
You're sitting in a comfy cushy seat, reading a book and listening
to your .mp3 player, and you're getting drowsy. It's so warm and
comfortable, your eyes are getting so heavy, finally the book slips
out of your hand, falls into your lap, and you are fast asleep.
-- Relative to you, the book is not moving at all.
-- Relative to the seat, you are not moving at all.
-- Relative to the wall and the window, the seat is not moving at all.
-- But your seat is in a passenger airliner. Relative to people on the
ground, you are moving past them at almost 500 miles per hour !
-- Relative to the center of the Earth, the people on the ground are moving
in a circle at more than 700 miles per hour.
-- Relative to the center of the Sun, the Earth and everything on it are moving
in a circle at about 66,700 miles per hour !
How fast are they REALLY moving ?
There's no such thing.
It all depends on what reference you're using.
D
The student's conclusion shows experimental bias
Just because most of nis classmates like puffed cereal ,it is inappropriate to conclude puffed cereal is better than oats cereal
The magnitude of the force that the beam exerts on the hi.nge will be,261.12N.
To find the answer, we need to know about the tension.
<h3>How to find the magnitude of the force that the beam exerts on the hi.nge?</h3>
- Let's draw the free body diagram of the system using the given data.
- From the diagram, we have to find the magnitude of the force that the beam exerts on the hi.nge.
- For that, it is given that the horizontal component of force is equal to the 86.62N, which is same as that of the horizontal component of normal reaction that exerts by the beam on the hi.nge.

- We have to find the vertical component of normal reaction that exerts by the beam on the hi.nge. For this, we have to equate the total force in the vertical direction.

- To find Ny, we need to find the tension T.
- For this, we can equate the net horizontal force.

- Thus, the vertical component of normal reaction that exerts by the beam on the hi.nge become,

- Thus, the magnitude of the force that the beam exerts on the hi.nge will be,

Thus, we can conclude that, the magnitude of the force that the beam exerts on the hi.nge is 261.12N.
Learn more about the tension here:
brainly.com/question/28106871
#SPJ1