1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
saveliy_v [14]
2 years ago
9

Skin is the main barrier between internal organs and the outside environment. The outer layer of skin is composed mostly of epit

helial cells. Which is a characteristic of epithelial cells that makes them ideal for providing this type of protection?
The cells are packed tightly together.

The cells are surrounded by a lot of extracellular matrix.

The cells are separated by synapses.

The cells are organized into a mesh structure.
Physics
2 answers:
zhannawk [14.2K]2 years ago
4 0

Answer- A: The cells are packed tightly together.

vagabundo [1.1K]2 years ago
3 0
The characteristic of epithelial cells that makes them ideal for providing this type of protection is that the cells are packed tightly together. 
Skin, the body's largest organ,is our first and best defense against external aggressors. The many layers work hard to protect us, however when its condition is compromised, its ability to work as an effective barrier is impaired. 
You might be interested in
At rest, hydrogen has a spectral line at 116 nm. if this line is observed at 107 nm for the star sirius, how fast is sirius movi
Citrus2011 [14]

2.3275862×10¹²km/s fast is sirius moving in km/s.

<h3>Briefing:</h3>

Hydrogen has a spectral line at = 116nm=116×10⁻⁹m

Line is observed at = 107 nm=107×10⁻⁹m

Now, from the Hubble's law

V=(\Delta \lambda / \lambda)×C

Where,

v is the velocity

Δλ = Change in wavelength = 116 - 107= 9nm=9×10⁻⁹m

λ = Actual wavelength=116nm=116×10⁻⁹m

C is the speed of the light=3×10⁸m/s

on substituting the respective values, we get

V=(9/116)×3×10⁸=23275862.069×10⁵m/s

V=2.3275862×10¹²km/s.

<h3>What is the wavelength?</h3>

A waveform signal's wavelength, which is the distance between two identical locations (adjacent crests) in the succeeding cycles, determines whether it is sent through space or via a wire. Typically, in wireless systems, this length is specified in meters (m), centimeters (cm), or millimeters (mm).

To know more about Wavelength visit:

brainly.com/question/13533093

#SPJ4

4 0
1 year ago
Arm ab has a constant angular velocity of 16 rad/s counterclockwise. At the instant when theta = 60
geniusboy [140]

The <em>linear</em> acceleration of collar D when <em>θ = 60°</em> is - 693.867 inches per square second.

<h3>How to determine the angular velocity of a collar</h3>

In this question we have a system formed by three elements, the element AB experiments a <em>pure</em> rotation at <em>constant</em> velocity, the element BD has a <em>general plane</em> motion, which is a combination of rotation and traslation, and the ruff experiments a <em>pure</em> translation.

To determine the <em>linear</em> acceleration of the collar (a_{D}), in inches per square second, we need to determine first all <em>linear</em> and <em>angular</em> velocities (v_{D}, \omega_{BD}), in inches per second and radians per second, respectively, and later all <em>linear</em> and <em>angular</em> accelerations (a_{D}, \alpha_{BD}), the latter in radians per square second.

By definitions of <em>relative</em> velocity and <em>relative</em> acceleration we build the following two systems of <em>linear</em> equations:

<h3>Velocities</h3>

v_{D} + \omega_{BD}\cdot r_{BD}\cdot \sin \gamma = -\omega_{AB}\cdot r_{AB}\cdot \sin \theta   (1)

\omega_{BD}\cdot r_{BD}\cdot \cos \gamma = -\omega_{AB}\cdot r_{AB}\cdot \cos \theta   (2)

<h3>Accelerations</h3>

a_{D}+\alpha_{BD}\cdot \sin \gamma = -\omega_{AB}^{2}\cdot r_{AB}\cdot \cos \theta -\alpha_{AB}\cdot r_{AB}\cdot \sin \theta - \omega_{BD}^{2}\cdot r_{BD}\cdot \cos \gamma   (3)

-\alpha_{BD}\cdot r_{BD}\cdot \cos \gamma = - \omega_{AB}^{2}\cdot r_{AB}\cdot \sin \theta + \alpha_{AB}\cdot r_{AB}\cdot \cos \theta - \omega_{BD}^{2}\cdot r_{BD}\cdot \sin \gamma   (4)

If we know that \theta = 60^{\circ}, \gamma = 19.889^{\circ}, r_{BD} = 10\,in, \omega_{AB} = 16\,\frac{rad}{s}, r_{AB} = 3\,in and \alpha_{AB} = 0\,\frac{rad}{s^{2}}, then the solution of the systems of linear equations are, respectively:

<h3>Velocities</h3>

v_{D}+3.402\cdot \omega_{BD} = -41.569   (1)

9.404\cdot \omega_{BD} = -24   (2)

v_{D} = -32.887\,\frac{in}{s}, \omega_{BD} = -2.552\,\frac{rad}{s}

<h3>Accelerations</h3>

a_{D}+3.402\cdot \alpha_{BD} = -445.242   (3)

-9.404\cdot \alpha_{BD} = -687.264   (4)

a_{D} = -693.867\,\frac{in}{s^{2}}, \alpha_{BD} = 73.082\,\frac{rad}{s^{2}}

The <em>linear</em> acceleration of collar D when <em>θ = 60°</em> is - 693.867 inches per square second. \blacksquare

<h3>Remark</h3>

The statement is incomplete and figure is missing, complete form is introduced below:

<em>Arm AB has a constant angular velocity of 16 radians per second counterclockwise. At the instant when θ = 60°, determine the acceleration of collar D.</em>

To learn more on kinematics, we kindly invite to check this verified question: brainly.com/question/27126557

5 0
2 years ago
50 points !! I need help asap.......Consider a 2-kg bowling ball sits on top of a building that is 40 meters tall. It falls to t
r-ruslan [8.4K]

1) At the top of the building, the ball has more potential energy

2) When the ball is halfway through the fall, the potential energy and the kinetic energy are equal

3) Before hitting the ground, the ball has more kinetic energy

4) The potential energy at the top of the building is 784 J

5) The potential energy halfway through the fall is 392 J

6) The kinetic energy halfway through the fall is 392 J

7) The kinetic energy just before hitting the ground is 784 J

Explanation:

1)

The potential energy of an object is given by

PE=mgh

where

m is the mass

g is the acceleration of gravity

h is the height relative to the ground

While the kinetic energy is given by

KE=\frac{1}{2}mv^2

where v is the speed of the object

When the ball is sitting on the top of the building, we have

  • h=40 m, therefore the potential energy is not zero
  • v=0, since the ball is at rest, therefore the kinetic energy is zero

This means that the ball has more potential energy than kinetic energy.

2)

When the ball is halfway through the fall, the height is

h=20 m

So, half of its initial height. This also means that the potential energy is now half of the potential energy at the top (because potential energy is directly proportional to the height).

The total mechanical energy of the ball, which is conserved, is the sum of potential and kinetic energy:

E=PE+KE=const.

At the top of the building,

E=PE_{top}

While halfway through the fall,

PE_{half}=\frac{PE_{top}}{2}=\frac{E}{2}

And the mechanical energy is

E=PE_{half} + KE_{half} = \frac{PE_{top}}{2}+KE_{half}=\frac{E}{2}+KE_{half}

which means

KE_{half}=\frac{E}{2}

So, when the ball is halfway through the fall, the potential energy and the kinetic energy are equal, and they are both half of the total energy.

3)

Just before the ball hits the ground, the situation is the following:

  • The height of the ball relative to the ground is now zero: h=0. This means that the potential energy of the ball is zero: PE=0
  • The kinetic  energy, instead, is not zero: in fact, the ball has gained speed during the fall, so v\neq 0, and therefore the kinetic energy is not zero

Therefore, just before the ball hits the ground, it has more kinetic energy than potential energy.

4)

The potential energy of the ball as it sits on top of the building is given by

PE=mgh

where:

m = 2 kg is the mass of the ball

g=9.8 m/s^2 is the acceleration of gravity

h = 40 m is the height of the building, where the ball is located

Substituting the values, we find the potential energy of the ball at the top of the building:

PE=(2)(9.8)(40)=784 J

5)

The potential energy of the ball as it is halfway through the fall is given by

PE=mgh

where:

m = 2 kg is the mass of the ball

g=9.8 m/s^2 is the acceleration of gravity

h = 20 m is the height of the ball relative to the ground

Substituting the values, we find the potential energy of the ball halfway through the fall:

PE=(2)(9.8)(20)=392 J

6)

The kinetic energy of the ball halfway through the fall is given by

KE=\frac{1}{2}mv^2

where

m = 2 kg is the mass of the ball

v = 19.8 m/s is the speed of the ball when it is halfway through the  fall

Substituting the values into the equation, we find the kinetic energy of the ball when it is halfway through the fall:

KE=\frac{1}{2}(2)(19.8)^2=392 J

We notice that halfway through the fall, half of the initial potential energy has converted into kinetic energy.

7)

The kinetic energy of the ball just before hitting the ground is given by

KE=\frac{1}{2}mv^2

where:

m = 2 kg is the mass of the ball

v = 28 m/s is the speed of the ball just before hitting the ground

Substituting the values into the equation, we find the kinetic energy of the ball just before hitting the ground:

KE=\frac{1}{2}(2)(28)^2=784 J

We notice that when the ball is about to hit the ground, all the potential energy has converted into kinetic energy.

Learn more about kinetic and potential energy:

brainly.com/question/6536722

brainly.com/question/1198647

brainly.com/question/10770261

#LearnwithBrainly

4 0
3 years ago
Explain why a battery causes charge to flow spontaneously when the battery is inserted in a circuit
deff fn [24]
Batteries supply electrons to the circuit by releasing negatively charged atoms or ions. These ions are produced by the batteries through a chemical reaction that spontaneously occurs within the battery. So the negative end of the battery pushes the ions towards the positive end of the circuit with the help of the voltage. This is why eventually, batteries "run out" when the electrode is used up and the chemical reaction can no longer continue.
3 0
2 years ago
Under state law, what is the blood-alcohol limit for legally operating a motor vehicle?
Ymorist [56]

Answer:

HOPE IT HELPS....

Explanation:

CORRECT ANSWER IS 0.08

THANK YOU,

PLZ MARK ME AS BRAINLIST

5 0
3 years ago
Other questions:
  • Calculate the refractive index of the substance if the speed of light in the medium is 210,000 km/s.
    12·1 answer
  • A dwarf planet discovered out beyond the orbit of Pluto is known to have an orbital period of 619.36 years. What is its average
    13·1 answer
  • Why can gases and liquids both transmit heat by convection?
    13·2 answers
  • What is the wavelength of a sound wave with a frequency of 50 hz? (speed of sound is 342 m/s)?
    5·1 answer
  • Which best describes how the sun rotates?
    10·2 answers
  • A 2.0 kg wooden block is slid along a concrete surface (μk = 0.21) with an initial speed of 15 m/s. How far will the block slide
    15·1 answer
  • Which quantity vector is a vector quantity
    11·1 answer
  • You are given three pieces of wire that have different shapes (dimensions). You connect each piece of wire separately to a batte
    6·1 answer
  • Suppose the gravitational force between two spheres is 30 N. If the magnitude of both masses doubles, and the distance between t
    8·1 answer
  • exhibit 6-5 the weight of items produced by a machine is normally distributed with a mean of 8 ounces and a standard deviation o
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!