The frequency of a photon with an energy of 4.56 x 10⁻¹⁹ J is 6.88×10¹⁴ s⁻¹.
<h3>What is a frequency?</h3>
The number of waves that travel through a particular point in a given length of time is described by frequency. So, if a wave takes half a second to pass, the frequency is 2 per second.
Given that the energy of the photon is 4.56 x 10⁻¹⁹ J. Therefore, the frequency of the photon can be written as,

Hence, the frequency of a photon with an energy of 4.56 x 10⁻¹⁹ J is 6.88×10¹⁴ s⁻¹.
Learn more about Frequency:
brainly.com/question/5102661
#SPJ4
Complete Question
The complete question is shown on the first uploaded image
Answer:
Explanation:
From he question we are told that
The first mass is 
The second mass is 
From the question we can see that at equilibrium the moment about the point where the string holding the bar (where
are hanged ) is attached is zero
Therefore we can say that

Making x the subject of the formula



Looking at the diagram we can see that the tension T on the string holding the bar where
are hanged is as a result of the masses (
)
Also at equilibrium the moment about the point where the string holding the bar (where (
) and
are hanged ) is attached is zero
So basically


Making
subject


Answer: The net force acting on the car 1,299.3 N.
Explanation:
Mass of the car = 710 kg
Initial velocity of the car of the ,u= 37 km/h= 10.27 m/s 
Final velocity of the car,v = 120 km/h = 33.33 m/s
time taken b y car = 12.6 sec
v-u=at





The net force acting on the car 1,299.3 N.
The correct answer is
<span>C) Q
In fact, the symbol Q represents the heat, which is the form of energy transferred from a hot object to a cooler object. Heat generally refers to the energy related to the motion of the particles, and it is related to the temperature of an object: the higher the temperature of an object, the faster the particles of the object move, and so the object can transfer more energy (as heat) to other objects with lower temperature.</span>
Answer:
10 m/s^2
Explanation:
Equation: F = ma.
a = acceleration
m = mass
F = force
Because we are trying to find acceleration instead of force we want to rearrange the equation to solve for a which is F/m = a.
F = 20
m = 2
a = ?
a = F/m
a = 20/2
a = 10 m/s^2