Answer:
1:4
Explanation:
The formula for calculating kinetic energy is:

If the mass is multiplied by 4, then, the kinetic energy must be increased by 4 as well. Since they will be travelling at the same speed when they are at the same point, the relation between KA and KB must be 1:4 or 1/4. Hope this helps!
Answer:
1) The speed of sound increases
2) 440 Hz
3) 29°C
4) 17°C
5) 434 Hz
6) 12 m/s
7) 17.3 m
Explanation:
1) The speed of sound increases
2) V = f×λ
f = V/λ = 343/0.78 = 439.744 ≈ 440 Hz
3) V = f×λ
512 × 0.68 = 348.16 m/s
348.16 - 331 = 17.16
T = 17.16/0.6 = 28.6 ≈ 29°C
4) Increase in speed = 350 - 340 = 10
Increase in temperature = 10/0.6 = 16.67° ≈ 17°C
5) f = V/λ = 343/0.79 = 434 Hz
6) 331 + 0.6×30 - (331 × 0.6 ×10) = 12 m/s
7) V = 331 + 0.6×25 = 346m/s
λ = 346/20 = 17.3 m
She threw the marshmallow at a speed of around 4.76 m/s.The formula for the horizontal range gives the velocity.
<h3>What is projectile motion?</h3>
The motion of an item hurled or projected into the air, subject only to gravity's acceleration, is known as projectile motion.
The item is known as a projectile, and the course it takes is known as a trajectory. Falling object motion is a simple one-dimensional kind of projectile motion with no horizontal movement.
Given data;
The marshmallow was thrown at a distance of 2 meters
Range,R = 3 m
Initial velocity,u
The angle at which the marshmallow was thrown,θ = 30°
The acceleration due to gravity,g = 9.81 m/s²
The projectile's motion is divided into two parts: horizontal and vertical motion.

Hence, she throws the marshmallow at a speed of 4.76 m/sec.
To learn more about the projectile motion refer to the link;
brainly.com/question/11049671
#SPJ1
Answer:
your right answer is true
hope it helps you
The relevant formula we can use in this case would be:
h = v0 t + 0.5 g t^2
where,
h = height or distance travelled
v0 = initial velocity = 0 since it was dropped
t = time = 1 seconds
g = 9.8 m/s^2
So calculating for height h:
h = 0 + 0.5 * 9.8 m/s^2 * (1 s)^2
<span>h = 4.9 meters</span>