Answer: a= 0.175 m/s²
Explanation: To solve for acceleration we will use Newton's Second Law of Motion which is F=ma. Since there are multiple forces acting on the object, we need to summate the forces involved. Derive to find acceleration.
a= F/m
= 5 N - 3.6 N / 8 kg
= 0.175 m/s²
The power of a machine depend on two factors are work and time.
Option C
<u>Explanation:</u>
In science, power defined as the amount of work done in a unit time. i.e. delivering work in a rate of time or energy supply, expressed in input of work or transmitted energy divided by the time interval (t) or W/t.
Example: Some work can be done in the long run with a low-power engine or in a short time with a motor with high performance. The equation for power can be given as


Answer:
the branch of mechanics concerned with the interaction of electric currents with magnetic fields or with other electric currents.
Explanation:
Answer:
35.14°C
Explanation:
The equation for linear thermal expansion is
, which means that a bar of length
with a thermal expansion coefficient
under a temperature variation
will experiment a length variation
.
We have then
= 0.481 foot,
= 1671 feet and
= 0.000013 per centigrade degree (this is just the linear thermal expansion of steel that you must find in a table), which means from the equation for linear thermal expansion that we have a
= 22.14°. As said before, these degrees are centigrades (Celsius or Kelvin, it does not matter since it is only a variation), and the foot units cancel on the equation, showing no further conversion was needed.
Since our temperature on a cool spring day was 13.0°C, our new temperature must be
= 35.14°C