Answer:
7 L of H₂.
Explanation:
The balanced equation for the reaction is given below:
2H₂ + O₂ —> 2H₂O
From the balanced equation above,
1 L of O₂ required 2 L of H₂.
Finally, we shall determine the volume of H₂ required to react with 3.5 L of O₂. This can be obtained as follow:
From the balanced equation above,
1 L of O₂ required 2 L of H₂.
Therefore, 3.5 L of O₂ will require
= 3.5 × 2 = 7 L of H₂.
Thus, 7 L of H₂ is required to for the reaction.
To get the value of ΔG we need to get first the value of ΔG°:
when ΔG° = - R*T*㏑K
when R is constant in KJ = 0.00831 KJ
T is the temperature in Kelvin = 25+273 = 298 K
and K is the equilibrium constant = 4.5 x 10^-4
so by substitution:
∴ ΔG° = - 0.00831 * 298 K * ㏑4.5 x 10^-4
= -19 KJ
then, we can now get the value of ΔG when:
ΔG = ΔG° - RT*㏑[HNO2]/[H+][NO2]
when ΔG° = -19 KJ
and R is constant in KJ = 0.00831
and T is the temperature in Kelvin = 298 K
and [HNO2] = 0.21 m & [H+] = 5.9 x 10^-2 & [NO2-] = 6.3 x 10^-4 m
so, by substitution:
ΔG = -19 KJ - 0.00831 * 298K* ㏑(0.21/5.9x10^-2*6.3 x10^-4 )
= -40
Answer: Iro2
Explanation:
Iro2 compound name
Iridium(IV) oxide
Names
Chemical formula IrO2
Molar mass 224.22 g/mol
Appearance blue-black solid
Density 11.66 g/cm3
27 more rows
Answer:
A chemical reaction is a process in which one or more substances, also called reactants, are converted to one or more different substances, known as products. ... A chemical reaction rearranges the constituent atoms of the reactants to create different substances as products.
Explanation:
Hopefully this is what you needed