Answer:
c) 2.02 x 10^16 nuclei
Explanation:
The isotope decay of an atom follows the equation:
ln[A] = -kt + ln[A]₀
<em>Where [A] is the amount of the isotope after time t, k is decay constant, [A]₀ is the initial amount of the isotope</em>
[A] = Our incognite
k is constant decay:
k = ln 2 / Half-life
k = ln 2 / 4.96 x 10^3 s
k = 1.40x10⁻⁴s⁻¹
t is time = 1.98 x 10^4 s
[A]₀ = 3.21 x 10^17 nuclei
ln[A] = -1.40x10⁻⁴s⁻¹*1.98 x 10^4 s + ln[3.21 x 10^17 nuclei]
ln[A] = 37.538
[A] = 2.01x10¹⁶ nuclei remain ≈
<h3>c) 2.02 x 10^16 nuclei</h3>
<u>We are given:</u>
Mass of the Steelhead(m) = 9 kg
Velocity of the Steelhead(v) = 16 m/s
<u>Calculating the Kinetic Energy:</u>
KE = 1/2mv²
replacing the variables
KE = 1/2 * 9 * (16)²
KE = 1152 Joules
Answer:
physical science
earth science and life science
Answer:
pluto
Explanation:
Dwarf because it is very minut
By looking at the acceleration of the object.
In fact, Netwon's second law states that the resultant of the forces acting on an object is equal to the product between the mass m of the object and its acceleration:

So, when static friction is acting on the object, if the object is still not moving we know that all the forces are balanced: in fact, since the object is stationary, its acceleration is zero, and so the resultant of the forces (left term in the formula) must be zero as well (i.e. the forces are balanced).