Answer:
.
Explanation:
The mechanical energy of the system will be the kinetic energy plus the elastic potential energy:
.
We know that the equation for the kinetic energy is
, where <em>m </em>is the mass of the object and <em>v </em>its velocity.
We know that the equation for the elastic potential energy is
, where <em>k</em> is the spring constant and
the compression (or elongation) respect to equilibrium.
So for our values we have:
.
Answer:
= 0.0050 M
= 0.0155 M
Explanation:
Initial moles of
= 0.072 mole
Volume of container = 3.9 L
Initial concentration of
The given balanced equilibrium reaction is,

Initial conc. 0.018 M 0
At eqm. conc. (0.018-x) M (2x) M
The expression for equilibrium constant for this reaction will be,
![K_c=\frac{[I]^2}{[I_2]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BI%5D%5E2%7D%7B%5BI_2%5D%7D)

we are given : 
Now put all the given values in this expression, we get :


So, the concentrations for the components at equilibrium are:
![[I]=2\times x=2\times 0.0025=0.0050](https://tex.z-dn.net/?f=%5BI%5D%3D2%5Ctimes%20x%3D2%5Ctimes%200.0025%3D0.0050)
![[I_2]=0.018-x=0.018-0.0025=0.0155](https://tex.z-dn.net/?f=%5BI_2%5D%3D0.018-x%3D0.018-0.0025%3D0.0155)
Hence, concentrations of
and
are 0.0050 M ad 0.0155 M respectively.
Answer:
A) 37 m
Explanation:
The car is moving of uniformly accelerated motion, so the distance it covers can be calculated by using the following SUVAT equation:
(1)
where
v = 0 m/s is the final velocity of the car
u = 24 m/s is the initial velocity
a is the acceleration
d is the length of the skid
We need to find the acceleration first. We know that the force responsible for the (de)celeration is the force of friction, so:

where
m = 1000 kg is the mass of the car
is the coefficient of friction
a is the deceleration of the car
g = 9.8 m/s^2 is the acceleration due to gravity
The negative sign is due to the fact that the force of friction is against the motion of the car, so the sign of the acceleration will be negative because the car is slowing down. From this equation, we find:

And we can substitute it into eq.(1) to find d:

Longitude- Horizontal (East West)
Latitude- Vertical (North South)
Here, Carefully look at the graph.
When it is on x=10, it is approximately 10, (slightly less than 10)
Closest value would be 90, so y/x = 90/10 = 9
So, the density of the graph would be 9 g/cm³
In short, Your Answer would be Option D
Hope this helps!