Answer:
92.5925925926
Explanation:
8 million divided by the seconds in a day witch is 86400
Answer:
a.Phenols have the ability to spread out the negative charge that forms.
Explanation:
This happens because of the aromatic ring the phenols have. When loosing the proton, the anion formed have different resonance isomers due to the double bonds in the aromatic ring. This resonance makes the anion more stable and prevents the reaction going backwards.
On the other hand, regular alcohol doesn't have resonace and the reaction of loosing the proton goes leftward and righward: is in equilibrium.
That equilibrium decreases the acidity of the alcohol.
Sucrose will be the most effective. Hence, option D is correct.
<h3>What is sucrose?</h3>
Sucrose is simply the chemical name for sugar, the simple carbohydrate we know and love that is produced naturally in all plants, including fruits, vegetables and even nuts.
When salt or sugar (a solute) is combined with water or ice (a solvent) and is evenly distributed, the freezing point is lowered.
→ 
Hence, sucrose will be the most effective.
Learn more about sucrose here:
brainly.com/question/24214907
#SPJ1
A barometer measures atmospheric pressure.
Answer: Gases are complicated. They're full of billions and billions of energetic gas molecules that can collide and possibly interact with each other. Since it's hard to exactly describe a real gas, people created the concept of an Ideal gas as an approximation that helps us model and predict the behavior of real gases. The term ideal gas refers to a hypothetical gas composed of molecules which follow a few rules:
Ideal gas molecules do not attract or repel each other. The only interaction between ideal gas molecules would be an elastic collision upon impact with each other or an elastic collision with the walls of the container. [What is an elastic collision?]
Ideal gas molecules themselves take up no volume. The gas takes up volume since the molecules expand into a large region of space, but the Ideal gas molecules are approximated as point particles that have no volume in and of themselves.
If this sounds too ideal to be true, you're right. There are no gases that are exactly ideal, but there are plenty of gases that are close enough that the concept of an ideal gas is an extremely useful approximation for many situations. In fact, for temperatures near room temperature and pressures near atmospheric pressure, many of the gases we care about are very nearly ideal.
If the pressure of the gas is too large (e.g. hundreds of times larger than atmospheric pressure), or the temperature is too low (e.g.
−
200
C
−200 Cminus, 200, start text, space, C, end text) there can be significant deviations from the ideal gas law.
Explanation: