Answer:
You put it over a one to represent seven whole numbers or just 7
The answer is 88 cube units.
"h and k cannot both equal zero" -- yes, it can. if the vertex of a parabola is at (0, 0), there's nothing incorrect/invalid about that!!
"k and c have the same value" -- k and c do not have the same value. "k" is the y-value of the vertex and c is the constant in your quadratic equation, and the constant is not necessarily the y-value.
"the value of a remains the same" -- this is true. the a's in your equations are the same values, because the a-value is the coefficient of the x-variable in both equations. y = a(x - h)^2 and y = ax^2 -- both of these have a applying to your x-variables.
"h is equal to one half -b" -- this isn't true. the formula for calculating the x value of the vertex (h is the x-value of the vertex) is h = (-b/2a). -b/2a is not the same as one half -b because this answer choice doesn't involve the a-value.
Lets say you have 5x5. you would just add 5+5+5+5+5. To get a whole number for a fraction you have to do this. lets say you have 8/8 that would be equal to 8 circles and eight of those circles would be shaded in. 8/8 is one whole also 7/1 is a whole. It all depends on the problem you are trying to figure out
Answer:
Hope it helps....!!!!!
Step-by-step explanation:
AB = c = 38
BC = a = 29
AC = b
Angle ABC = 63 degrees
Solving for AC "b":
Cosine rule: c^2 = a^2 * b^2 -2ab * cos C
38^2 = 29^2 * b^2 - (2* 29) * b * (cos 38)
1444 = 841 * b^2 - 58 * b * 0.955
(1444 + 58)/0.955 = b^2 * b
1572.77486911 = b^3
11.62935 = b
11.63 = b (rounded to two decimal places)
Now solving for angle A:
Sine rule: a/sinA = b/sinB
29/sinA = 11.63/sin(63)
sinA/29 = sin(63)/11.63
sin A = (sin(63)/11.63) * 29
sin A = 0.41731
A = sin^-1 (0.41731)
A = 24 degrees 39 minutes 53 seconds
Now solving for angle C:
Sine rule: c/sinC = b/sinB
38/sinC = 11.63/sin(63)
sinC/38 = sin(63)/11.63
sin C = (sin(63)/11.63) * 38
sin C = 0.54682
C = sin^-1 (0.54682)
C = 33 degrees 8 minutes 56 seconds