The radius of the curved road at the given condition is 54.1 m.
The given parameters:
- <em>mass of the car, m = 1000 kg</em>
- <em>speed of the car, v = 50 km/h = 13.89 m/s</em>
- <em>banking angle, θ = 20⁰</em>
The normal force on the car due to banking curve is calculated as follows;

The horizontal force on the car due to the banking curve is calculated as follows;

<em>Divide </em><em>the second equation by the first;</em>

Thus, the radius of the curved road at the given condition is 54.1 m.
Learn more about banking angle here: brainly.com/question/8169892
Answer:
The final velocity of the wooden block is equal to 
Explanation:
Given that mass of bullet =
Mass of wood = 
Initial velocity of bullet = 
Final velocity of bullet = 
Initial velocity of wood = o
Final velocity of wood = ![v_{w]](https://tex.z-dn.net/?f=v_%7Bw%5D)
Here momentum is conserved so initial momentum = final momentum
.
Upon substituting these values in above equation , we get
.
I think the correct answer from the choices listed above is option B. When calculating the power bill, power companies use kilowatt-hours. This unit is a derived unit of energy equal to 3.6 MJ. If energy is being transmitted or used at a constant rate (power) over a period of time, the total energy in kilowatt-hours is the product of the power in kilowatts and the time.