1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Shkiper50 [21]
3 years ago
9

What is the mechanical advantage of a machine that applies a force of 1000 N to an object when a force of 500 N is applied to th

e machine?
0.5
2
500
1500
Physics
2 answers:
Nimfa-mama [501]3 years ago
8 0

Answer:

2

Explanation:

sergij07 [2.7K]3 years ago
4 0
Effort out = 1000 N
Effort in = 500 N
Mechanical advantage = Effort out / Effort in
                                     = 1000/500 
                                     = 2
From the above deduction, we can conclude that the correct option among all the options that are given in the question is the second option. I hope that this is the answer that you were looking for and the answer has actually come to your desired help.
You might be interested in
Consider the two-body situation at the right. A 300kg crate rests on an inclined plane and is connected by a cable to a 100 kg m
trasher [3.6K]

Answer:

a= 0.578 m/s

T = 1037.8 N

Explanation:

Data

m₁= 300 kg

m₂= 100 kg

inclined plane, θ =  30°

μk = 0.120

Newton's second law to m₁:

We define the x-axis in the direction parallel to the movement of the 300kg (m₁) crate on the ramp and the y-axis in the direction perpendicular to it.

∑F = m₁*a Formula (1)

Forces acting on m₁

W₁: m₁ weight : In vertical direction

N : Normal force : perpendicular to the inclined plane

f : Friction force: parallel to the inclined plane

T:  cable tension : parallel to inclined plane

Calculated of the W₁

W₁=m₁*g

W₁= 300kg* 9.8 m/s² = 2940 N

x-y weight components

W₁x= W₁sin θ =2940 N*sin(30)° =1470 N

W₁y= W₁cos θ =2940 N *cos(30)° =2156.4 N

Calculated of the N

We apply the formula (1)

∑Fy = m*ay    ay = 0

N - W₁y = 0

N = W₁y

N = 2156.4 N

Calculated of the f

f = μk* N= (0.120)*(2156.4 N)

f = 258.77 N

Newton's second law to m₁ in direction  x-axis :

∑Fx = m₁*ax   ,ax  =a

We assume that m₁ descends on the inclined plane and we positively take the direction of movement:

wx-f-T = m*a

wx - f - m*a =T

1470  -258.77 -300*a =T

T= 1211.23-300*a   Equation (1)

Newton's second law to m₂

∑Fy = m₂*ay   ,ay  =a

Forces acting on m₂

W₂: m₂ weight : In vertical direction

T:  cable tension:In vertical direction

Calculated of the W₂

W₂=m₂*g

W₂= 100kg* 9.8 m/s² = 980 N

∑Fy = m₂*a

Because we assume that m₁ descends on the inclined plane, then, m₂ ascends  vertically, we take positive the direction of movement:

T-W₂ = m₂*a

T-980 = 100*a

T = 980 + 100*a Equation (2)

Problem development

Equation (1) =  Equation (2) = T

1211.23-300*a= 980  + 100*a

1211.23- 980 = 100*a + 300*a

231.23 = 400*a

a= 231.23 / 400

a= 0.578 m/s

Because the acceleration tested positive then effectively m₁ descends on the inclined plane and m₂ ascends  vertically.

We replace a= 0.578 m/s in the equatión (2)

T = 980 + 100* (0.578 )

T = 1037.8 N

5 0
3 years ago
g Warm water in a geothermal heating system enters the pipe of a radiator at 20 psia and 119oF with a flow rate of 235 cfm (ft3/
Vika [28.1K]

Answer:

See explanation

Explanation:

Notice that the condenser section includes both the hot water and space heater and station (3) is specified as being in the Quality region. Assume that 50°C is a reasonable maximum hot water temperature for home usage, thus at a high pressure of 1.6 MPa, the maximum power available for hot water heating will occur when the refrigerant at station (3) reaches the saturated liquid state. (Quick Quiz: justify this statement). Assume also that the refrigerant at station (4) reaches a subcooled liquid temperature of 20°C while heating the air.

Using the conditions shown on the diagram and assuming that station (3) is at the saturated liquid state

a) On the P-h diagram provided below carefully plot the five processes of the heat pump together with the following constant temperature lines: 50°C (hot water), 13°C (ground loop), and -10°C (outside air temperature)

b) Using the R134a property tables determine the enthalpies at all five stations and verify and indicate their values on the P-h diagram.

c) Determine the mass flow rate of the refrigerant R134a. [0.0127 kg/s]

d) Determine the power absorbed by the hot water heater [2.0 kW] and that absorbed by the space heater [0.72 kW].

e) Determine the time taken for 100 liters of water at an initial temperature of 20°C to reach the required hot water temperature of 50°C [105 minutes].

f) Determine the Coefficient of Performance of the hot water heater [COPHW = 4.0] (defined as the heat absorbed by the hot water divided by the work done on the compressor)

g) Determine the Coefficient of Performance of the heat pump [COPHP = 5.4] (defined as the total heat rejected by the refrigerant in the hot water and space heaters divided by the work done on the compressor)

h) What changes would be required of the system parameters if no geothermal water loop was used, and the evaporator was required to absorb its heat from the outside air at -10°C. Discuss the advantages of the geothermal heat pump system over other means of space and water heating

4 0
3 years ago
Name:
Brums [2.3K]

Answer:

1.a) 1 kJ

1.b) 4 kJ

     ratio 1:4

1.c) 4 times as before

2.a)  3.33 m/s2

Explanation:

1.a) bicycle's velocity =Displacement/time

                                   =100/20 m/s

                                   =5 m/s

bicycler's KE =1/2 *mass*(velocity)^2

                      =1/2*80*5^2

                       =1000 J = 1 kJ

1.b) bicycle's new velocity =200/20 m/s

                                   =10 m/s

bicycler's new KE =1/2*80*10^2

                             =4000 J = 4 kJ

Ratio= KE 1 :KE new

        = 1 :4

1.c)  when bicycler's speed was doubled it increased the KE by 4 times (2^2). because In KE we consider the square of the speed , so the factor we increase the speed , the KE will get increased with the square value of it

ex : speed is triple the prior value , then the KE is as 3^2 times as before. that is 9 times

2.a) car acceleration = (20-0)/6 m/s2

                                  = 3.33 m/s2

4 0
3 years ago
If a bouncing ball has a total energy of 20 J and a kinetic energy of 5 J, the ball’s potential energy is
navik [9.2K]

Answer:

15 and Increasing

Explanation:

Hope this helps

Have a wonderful day and many more to come

Alexis~

~A.K.A Moon~

7 0
2 years ago
Julio blows air across his hot bowl of soup. The tiny ripples he creates are similar to _____.
Allushta [10]

The tiny ripples on the soup are not only similar to wind-generated
waves ... they ARE wind-generated waves.  This is a big part of the
reason why they bear such an uncanny resemblance.

8 0
3 years ago
Read 2 more answers
Other questions:
  • sing a rope that will snap if the tension in it exceeds 361 N, you need to lower a bundle of old roofing material weighing 455 N
    6·1 answer
  • What sound frequency would the human ear not be able to detect?
    5·2 answers
  • In most cases, a multicellular organism is not an exact copy of its parents because it
    10·2 answers
  • How do fossils provide evidence that evolution has occurred?
    9·1 answer
  • I NEED HELP, PLEASE.
    6·1 answer
  • Color depends on what characteristic of light?
    15·1 answer
  • Match the atom to the number of electrons it is likely to gain/lose.
    9·1 answer
  • Please help this due 11:59
    14·2 answers
  • A roller coaster is traveling at 13 m/s when it approaches a hill that is 400 m long. Heading down the hill, it accelerates at 4
    12·1 answer
  • Calculate the mass of a truck traveling at 30.56 m/s that has a starting momentum of 77,000 kg*m/s
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!