Answer:
Neither technician
Explanation:
Neither technician is correct.
two bulbs are connected in series one bulb burn out
If one bulb in the series burns out then the circuit will break.
In a series circuit same current passes each resistor.
so, both the technician is incorrect bulb B will not work and current will not increase in the other bulb.
Answer:
#_photon = 5 10²⁰ photons / s
Explanation:
For this exercise let's calculate the energy of a single quantum of energy, use Planck's law
E = h f
c= λ f
E = h c / λ
λ= 1000 nm (1 m / 109 nm) = 1000 10⁻⁹ m
Let's calculate
E₀ = 6.6310⁻³⁴ 3 10⁸/1000 10⁻⁹
E₀ = 19.89 10⁻²⁰ J
This is the energy emitted by a photon let's use a proportions rule to find the number emitted in P = 100 w
#_photon = P / E₀
#_photon = 100 / 19.89 10⁻²⁰
#_photon = 5 10²⁰ photons / s
155Ω
Explanation:
R = R ref ( 1 + ∝ ( T - Tref)
where R = conduction resistance at temperature T
R ref = conductor resistance at reference temperature
∝ = temperature coefficient of resistance for conductor
T = conduction temperature in degrees Celsius
T ref = reference temperature that ∝ is specified at for the conductor material
T = 600 k - 273 k = 327 °C
Tref = 300 - 273 K = 27 °C
R = 50 Ω ( 1 + 0.007 ( 327 - 27) )
R = 155Ω