The answer would be C: Rheostat. :)
Kinetic energy is movement, thus movement would be a characteristic that allows an object to have kinetic energy
Answer:
I think the answer to your question is true
Answer:
R=m*g-∀fl*g*l3
Explanation:
<em>An iron block of density rhoFe and of volume l 3 is immersed in a fluid of density rhofluid. The block hangs from a scale which reads W as the weight. The top of the block is a height h below the surface of the fluid. The correct equation for the reading of the scale is</em>
From Archimedes' principle we know that a body when immersed in a fluid, fully or partially, experiences an the upward buoyant force equal to the weight of the fluid displaced. As the body is fully submerged in water, volume of water displaced
density of iron =mass/ volume
rho=m/l3
mass=rhol3
weight fluid=rhofluid*g*Volume
weight of fluid=rhofluid*g*l3
F=∀fl*g*l3
Downward force is weight of iron
w=m*g
Reading on the spring scale
R=w-F
R=m*g-∀fl*g*l3
m=mass of iron
g=acceleration due to ravity
rhfld=density of fluid
l3=volume of fluid displaced
Answer:
Explanation:
i )
When it is disconnected with the battery , the charge stored in it becomes fixed . When the plate distance becomes half , its capacitance becomes twice from C to 2C . Let charge stored in it at the time of disconnection from battery be Q . Let plate separation reduces from d to d / 2
So charged stored in it will remain unchanged .
ii )
Potential difference = charge / capacitance
in the first case potential difference = Q / C
in the second case potential difference = Q / 2C
So potential difference becomes half .
iii ) electric field = potential diff / plate separation
in the first case electric field = Q / (d x C )
in the second case electric field = 2 Q / (d x 2C)
= Q / (d x C )
So electric field remains unchanged .
iv)
energy stored in first case = Q² / 2C
In the second case energy stored = Q² / 2x2C
so energy stored becomes half .