1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sashaice [31]
3 years ago
9

What is the fundamental frequency of a 0.003 kg steel piano wire of length 1.3 m and under a tension of 2030 N? Answer in units

of Hz. 005 (part 2 of 2) 10.0 points What is the fundamental frequency of an organ pipe 1.38 m in length, closed at the bottom and open at the top? The speed of sound is 340 m/s. Answer in units of Hz.
Physics
1 answer:
Sladkaya [172]3 years ago
4 0

a) 277.5 Hz

b) 61.6 Hz

Explanation:

a)

Stationary waves are the waves produced on a string: these are waves that do not propagate through space, since they travel only back and forth along the string.

These waves can have different frequencies, depending in how many segments of the string they vibrate.

The frequency of the fundamental mode of vibration (the one having only two nodes at the ends of the string) is called fundamental frequency, and it is given by:

f_1=\frac{1}{2L}\sqrt{\frac{T}{m/L}}

where

L is the length of the spring

T is the tension

m is the mass of the string

For the steel piano wire in this problem:

T = 2030 N

L = 1.3 m

m = 0.003 kg

Therefore, the fundamental frequency is

f_1=\frac{1}{2(1.3)}\sqrt{\frac{2030}{(0.003)/(1.3)}}=277.5 Hz

b)

An organ pipe is a closed-air tube, which is open at one end and close at the other end.

For a closed-open air tube, the wavelength of the fundamental mode of vibration is equal to 4 times the length of the tube:

\lambda_1 = 4 L

In this case, the length of the tube is

L = 1.38 m

So the fundamental wavelength is

\lambda_1 = 4(1.38)=5.52 m

The relationship between frequency and wavelength for a sound wave is

f_1=\frac{v}{\lambda_1}

where in this case:

v = 340 m/s is the speed of sound

\lambda_1 = 5.52 m is the fundamental wavelength

Solving for f1, we find the fundamental frequency:

f_1=\frac{340}{5.52}=61.6 Hz

You might be interested in
A material you are testing conducts electricity but canot be pulled into wires
agasfer [191]
A material you are testing conducts electricity but cannot be pulled into wires. It is most likely a metalloid. Hope this helps!
4 0
3 years ago
"Younger teens often brag about a lack of sleep, but that usually stops when they get older. Why do you think that is?"
svet-max [94.6K]

as we grow up we kinda experience some age staging so a teen got a lotta stuff going on they wanna be social active they be working on their popularity. so i guess thats it

3 0
2 years ago
Since the aluminum bar is not an isolated system, the second law of thermodynamics cannot be applied to the bar alone. Rather, i
max2010maxim [7]

Answer:

ΔS total ≥ 0 (ΔS total = 0 if the process is carried out reversibly in the surroundings)

Explanation:

Assuming that the entropy change in the aluminium bar is due to heat exchange with the surroundings ( the lake) , then the entropy change of the aluminium bar is, according to the second law of thermodynamics, :

ΔS al ≥ ∫dQ/T

if the heat transfer is carried out reversibly

ΔS al =∫dQ/T  

in the surroundings

ΔS surr ≥ -∫dQ/T = -ΔS al → ΔS surr ≥ -ΔS al = - (-1238 J/K) = 1238 J/K

the total entropy change will be

ΔS total = ΔS al + ΔS surr

ΔS total ≥ ΔS al + (-ΔS al) =

ΔS total ≥ 0

the total entropy change will be ΔS total = 0 if the process is carried out reversibly in the surroundings

4 0
3 years ago
A parallel-plate capacitor has a plate area of 0.2m^2 and a plate separation of 0.1mm. To obtain an electric field of 2.0 × 10^6
Oduvanchick [21]

Answer:

3.536*10^-6 C

Explanation:

The magnitude of the charge is expresses as Q = CV

C is the capacitance of the capacitor

V is the voltage across the capacitor

Get the capacitance

C = ε0A/d

ε0 is the permittivity of the dielectric = 8.84 x 10-12 F/m

A is the area = 0.2m²

d is the plate separation = 0.1mm = 0.0001m

Substitute

C = 8.84 x 10-12 * 0.2/0.0001

C = 1.768 x 10-8 F

Get the potential difference V

Using the formula for Electric field intensity

E = V/d

2.0 × 10^6  = V/0.0001

V = 2.0 × 10^6  * 0.0001

V = 2.0 × 10^2V

Get the charge on each plate.

Q = CV

Q =  1.768 x 10-8 * 2.0 × 10^2

Q = 3.536*10^-6 C

Hence the magnitude of the charge on each plate should be 3.536*10^-6 C

5 0
2 years ago
Plants make energy. Some of it they use to preform the necessary functions of living. What do they do with the excess energy?
Maksim231197 [3]

Answer:

They can use it for when they are dormant in the winter or to grow more sources for storing and creating energy, or they store the energy (this energy would be considered stored energy).

4 0
2 years ago
Other questions:
  • For a solution to be a physical solution, it must satisfy several criteria. First, it must be continuous everywhere. Second, it
    9·1 answer
  • Analyze how buffers allow you to eat acidic and basic foods without changing your blood pH.
    14·1 answer
  • Which statement describes Redi’s experiment, which helped disprove spontaneous generation?
    10·2 answers
  • Two racecars are driving at constant speeds around a circular track. both cars are the same distance away from the center of the
    12·1 answer
  • Light emitting diode (LEDs) light bulbs have become required in recent years, but do they make financial sense? Suppose a typica
    12·1 answer
  • A 4-kg hammer is lifted to a height of 10 m and dropped from rest. What was the velocity (in m/s) of the hammer when it was at a
    7·1 answer
  • A proton, starting from rest, accelerates through a potential difference of 1.0 kV and then moves into a magnetic field of 0.040
    13·1 answer
  • Very short answer questions.
    6·1 answer
  • What is the distance, in meters, between adjacent fringes produced by a diffraction grating having 125 lines per centimeter
    13·1 answer
  • A weather forecaster uses a computational model on a Monday to predict the weather on Friday. Why might that forecast change? (1
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!