Answer:B. Increased the amount of charge.
Explanation:
Answer:
Explanation:
q = 2e = 3.2 x 10^-19 C
mass, m = 6.68 x 10^-27 kg
Kinetic energy, K = 22 MeV
Current, i = 0.27 micro Ampere = 0.27 x 10^-6 A
(a) time, t = 2.8 s
Let N be the alpha particles strike the surface.
N x 2e = q
N x 3.2 x 10^-19 = i t
N x 3.2 x 10^-19 = 0.27 x 10^-6 x 2.8
N = 2.36 x 10^12
(b) Length, L = 16 cm = 0.16 m
Let N be the alpha particles
K = 0.5 x mv²
22 x 1.6 x 10^-13 = 0.5 x 6.68 x 10^-27 x v²
v² = 1.054 x 10^15
v = 3.25 x 10^7 m/s
So, N x 2e = i x t
N x 2e = i x L / v
N x 3.2 x 10^-19 = 2.7 x 10^-7 x 0.16 / (3.25 x 10^7)
N = 4153.85
(c) Us ethe conservation of energy
Kinetic energy = Potential energy
K = q x V
22 x 1.6 x 10^-13 = 2 x 1.5 x 10^-19 x V
V = 1.17 x 10^7 V
To solve this problem we will apply the concepts related to the balance of Forces, the centripetal Force and Newton's second law.
I will also attach a free body diagram that allows a better understanding of the problem.
For there to be a balance between weight and normal strength, these two must be equivalent to the centripetal Force, therefore


Here,
m = Net mass
= Angular velocity
r = Radius
W = Weight
N = Normal Force

The net mass is equivalent to

Then,

Replacing we have then,

Solving to find the angular velocity we have,

Therefore the angular velocity is 0.309rad/s
Answer: mechanical energy
Explanation: I hope this helps! Also, please mark as brainliest, thanks!
Answer:
he kinetic energy increases on the descent, being maximum at the lowest point of the trajectory.
Explanation:
In these semicircular sections the skaters slide from one side to the other, in the downward path their kinetic energy increases and their potential energy decreases; When it leaves the ramp and is in the air, the kinetic energy decreases rapidly, up to the point of maximum height where the kinetic energy is zero.
Consequently, the kinetic energy increases on the descent, being maximum at the lowest point of the trajectory.