1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bad White [126]
3 years ago
12

a car is traveling at 26 m/s starts to decelerate steadily. It comes to a complete stop in 6 seconds. What is the acceleration?

Physics
2 answers:
torisob [31]3 years ago
5 0
I can’t see if anyone have gave you the answer yet
ad-work [718]3 years ago
4 0
-0.5 m/s^2

Hope you enjoy!
You might be interested in
Cars A and B are racing each other along the same straight road in the following manner: Car A has a head start and is a distanc
4vir4ik [10]

The question is incomplete. Here is the complete question.

Cars A nad B are racing each other along the same straight road in the following manner: Car A has a head start and is a distance D_{A} beyond the starting line at t = 0. The starting line is at x = 0. Car A travels at a constant speed v_{A}. Car B starts at the starting line but has a better engine than Car A and thus Car B travels at a constant speed v_{B}, which is greater than v_{A}.

Part A: How long after Car B started the race will Car B catch up with Car A? Express the time in terms of given quantities.

Part B: How far from Car B's starting line will the cars be when Car B passes Car A? Express your answer in terms of known quantities.

Answer: Part A: t=\frac{D_{A}}{v_{B}-v_{A}}

              Part B: x_{B}=\frac{v_{B}D_{A}}{v_{B}-v_{A}}

Explanation: First, let's write an equation of motion for each car.

Both cars travels with constant speed. So, they are an uniform rectilinear motion and its position equation is of the form:

x=x_{0}+vt

where

x_{0} is initial position

v is velocity

t is time

Car A started the race at a distance. So at t = 0, initial position is D_{A}.

The equation will be:

x_{A}=D_{A}+v_{A}t

Car B started at the starting line. So, its equation is

x_{B}=v_{B}t

Part A: When they meet, both car are at "the same position":

D_{A}+v_{A}t=v_{B}t

v_{B}t-v_{A}t=D_{A}

t(v_{B}-v_{A})=D_{A}

t=\frac{D_{A}}{v_{B}-v_{A}}

Car B meet with Car A after t=\frac{D_{A}}{v_{B}-v_{A}} units of time.

Part B: With the meeting time, we can determine the position they will be:

x_{B}=v_{B}(\frac{D_{A}}{v_{B}-v_{A}} )

x_{B}=\frac{v_{B}D_{A}}{v_{B}-v_{A}}

Since Car B started at the starting line, the distance Car B will be when it passes Car A is x_{B}=\frac{v_{B}D_{A}}{v_{B}-v_{A}} units of distance.

5 0
3 years ago
when energy is transferred from one part of a system to another, some of the energy is lost during the transfer and cannot be us
AlladinOne [14]

Sentences A and D describe examples of energy transformation.Heat is produced when a car's tires rub against the pavement and as electricity passes across power wires, they become hotter.

<h3>What is the law of conservation of energy?</h3>

According to the law of conservation of energy, the energy of an isolated system stays unchanged throughout time.it is said to be conserved.

Energy cannot be created nor destroyed and can be transferred from one form to the other form.

The complete question is

"When energy is moved from one component of a system to another, some of the energy is lost and cannot be used as planned.

Which two statements provide examples?

A. Friction between a car's tires and the road produces heat.

B. Sunlight strikes a solar panel, generating electricity.

c. Stereo speakers emit a sound when powered by electrical energy,

D. Wind moves a turbine, generating electricity.

I E. Power lines heat up as electricity flows through them."

Some of the energy wasted during the movement of energy from one section of a system to another is heat is produced by friction between a car's tires and the road and as electricity passes via power lines, they heat up.

Hence, sentences A and D describe examples of energy transformation.

To learn more about the law of conservation of energy refer to the link;

brainly.com/question/2137260

#SPJ1

5 0
2 years ago
A roadrunner is running along a straight desert road at a constant velocity of 25 m/s. If a certain coyote wants to capture the
andreyandreev [35.5K]

Answer:

t = 1.42 s and d = 35.5 m

Explanation:

Given that,

Velocity of a roadrunner is 25 m/s

A certain coyote wants to capture the roadrunner using a net dropped from an overpass that is 10 m high.

We need to find the time before the roadrunner is under the overpass and  how far away from the overpass is the roadrunner when the coyote drops the net.

d=ut+\dfrac{1}{2}at^2\\\\\text{Here, u = 0 and a = g}\\\\d=\dfrac{1}{2}gt^2\\\\t=\sqrt{\dfrac{2d}{g}} \\\\t=\sqrt{\dfrac{2\times 10}{9.8}} \\\\t=1.42\ s

Let d is the distance traveled. So,

d = vt

d = 25 m/s × 1.42 s

d = 35.5 m

5 0
3 years ago
Please i need detailed explanation​
zubka84 [21]

Answer:

2Micro Farahds

Explanation:

Its in the picture.

I Hope it helps.

4 0
3 years ago
Calculate the de Broglie wavelength of a 0.56 kg ball moving with a constant velocity of 26 m/s (about 60 mi/h)
PilotLPTM [1.2K]

The de Broglie wavelength of a 0.56 kg ball moving with a constant velocity of 26 m/s is 4.55×10⁻³⁵ m.

<h3>De Broglie wavelength:</h3>

The wavelength that is incorporated with the moving object and it has the relation with the momentum of that object and mass of that object. It is inversely proportional to the momentum of that moving object.

λ=h/p

Where, λ is the de Broglie wavelength, h is the Plank constant, p is the momentum of the moving object.

Whereas, p=mv, m is the mass of the object and v is the velocity of the moving object.

Therefore, λ=h/(mv)

λ=(6.63×10⁻³⁴)/(0.56×26)

λ=4.55×10⁻³⁵ m.

The de Broglie wavelength associated with the object weight 0.56 kg moving with the velocity of 26 m/s is λ=4.55×10⁻³⁵ m.

Learn more about de Broglie wavelength on

brainly.com/question/15330461

#SPJ1

6 0
1 year ago
Other questions:
  • 9. A child standing on a bus remains still when the bus is at rest. When the bus moves forward and then slows down, the child co
    12·1 answer
  • Between 1911 and 1990, the top of the leaning bell tower at Pisa, Italy, moved toward the south at an average rate of 1.2 mm/y.T
    13·1 answer
  • A piano string having a mass per unit length equal to 5.20 10-3 kg/m is under a tension of 1 450 N. Find the speed with which a
    10·1 answer
  • A 10.0 g block with a charge of +8.00×10-5C is placed in an electric field E = (3000iˆ - 600 ˆj)N /Cs. What are the
    12·1 answer
  • An astronaut has left the International Space Station to test a new space scooter. Her partner measures the following velocity c
    10·1 answer
  • Check my work please
    9·1 answer
  • Is polarization possible for longitudinal waves ?
    5·1 answer
  • Help me please
    9·1 answer
  • HELP ME ASAP ITS PHYSICS AND it’s finding the kinetic energy SHOW WORKKK
    6·2 answers
  • Describe different atoms of the same element.
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!