I actually don't know. i speak english.
The answer is either C or D..
Explanation:
Load=800N
Effort=200N
1. Mechanical Advantage = LOAD/EFFORT
= 800N/200N
= 4
2 Velocity Ratio = no. Of pulleys =5
3. Efficiency = Mechanical advantage / velocity ratio × 100%
= (4/5)×100%
=80%
4. output work= load×load distance
= 800N × 5m
= 4 × 1000J
5. Efficiency = (output work/input work) ×100%
Or, 80% = (4000J/input work) ×100%
Or, 80%/100% = 4000J/inputwork
Or, 4/5 = 4000J/inputwork
Or, input work =4000J × 5/4
Input work = 5×1000J
I hope it helped! ;-)
To solve the problem it is necessary to apply the concepts related to Kepler's third law as well as the calculation of distances in orbits with eccentricities.
Kepler's third law tells us that

Where
T= Period
G= Gravitational constant
M = Mass of the sun
a= The semimajor axis of the comet's orbit
The period in years would be given by

PART A) Replacing the values to find a, we have




Therefore the semimajor axis is 
PART B) If the semi-major axis a and the eccentricity e of an orbit are known, then the periapsis and apoapsis distances can be calculated by



Answer:
(a) 
(b) 
Explanation:
Parameter given:
Electric field, E = 
(a) Electric force is given (in terms of electric field) as a product of electric charge and electric field.
Mathematically:

Electric charge, q, of an electron = 

(b) This electrostatic force causes the electron to accelerate with an equivalent force:
F = -ma
where m = mass of an electron
a = acceleration of electron
(Note: the force is negative cos the direction of the force is opposite the direction of the electron)
Therefore:

Mass, m, of an electron = 
=> 
The acceleration of the electron is 