Answer:
The maximum value of the induced magnetic field is
.
Explanation:
Given that,
Radius of plate = 30 mm
Separation = 5.0 mm
Frequency = 60 Hz
Suppose the maximum potential difference is 100 V and r= 130 mm.
We need to calculate the angular frequency
Using formula of angular frequency

Put the value into the formula


When r>R, the magnetic field is inversely proportional to the r.
We need to calculate the maximum value of the induced magnetic field that occurs at r = R
Using formula of magnetic filed

Where, R = radius of plate
d = plate separation
V = voltage
Put the value into the formula


Hence, The maximum value of the induced magnetic field is
.
The ones with pH greater than 7
Explanation:
A pH scale is a scale for expressing the level of acidity or alkalinity of aqueous solutions.
This scale is called a pH or pOH scale. The pH is the common one.
pH of a solution is the negative logarithm to base 10 o the hydrogen ion concentration of the solution.
- The scale ranges from 1 through 14.
- An acidic solution has a pH value less than 7. Neutral solutions have pH of 7 and basic solutions have pH greater than 7.
learn more:
acidity brainly.com/question/5121777
#learnwithBrainly
Answer:

Explanation:
Given data:
Mass of the paper clip, 
Kinetic energy, 
Let the velocity of the paper clip when it is thrown be <em>v</em>.
Thus,



(rounding to nearest tenth)
Answer:
proportional to the current in the wire and inversely proportional to the distance from the wire.
Explanation:
The magnetic field produced by a long, straight current-carrying wire is given by:

where
is the vacuum permeability
I is the current intensity in the wire
r is the distance from the wire
From the formula, we notice that:
- The magnitude of the magnetic field is directly proportional to I, the current
- The magnitude of the magnetic field is inversely proportional to the distance from the wire, r
Therefore, correct option is
proportional to the current in the wire and inversely proportional to the distance from the wire.