Length of rectangle is 1 unit
<u>Solution:
</u>
Given that
Length of a rectangle is width minus 8 units.
Area of rectangle = 9 square units
Need to calculate the length of rectangle.
Let us assume width of rectangle = x
As Length is width minus 8,
Length of the rectangle = x – 8
![\text{ Area of rectangle }=\text{ width of rectangle }\times \text{ Length of the rectangle }](https://tex.z-dn.net/?f=%5Ctext%7B%20Area%20of%20rectangle%20%7D%3D%5Ctext%7B%20width%20of%20rectangle%20%7D%5Ctimes%20%5Ctext%7B%20Length%20of%20the%20rectangle%20%7D)
![\text{ Area of rectangle }= x\times (x-8)](https://tex.z-dn.net/?f=%5Ctext%7B%20Area%20of%20rectangle%20%7D%3D%20x%5Ctimes%20%28x-8%29)
![\text { Area of rectangle }=\left(x^{2}-8 x\right)](https://tex.z-dn.net/?f=%5Ctext%20%7B%20Area%20of%20rectangle%20%7D%3D%5Cleft%28x%5E%7B2%7D-8%20x%5Cright%29)
As given that area of rectangle = 9 square units
![\begin{array}{l}{\Rightarrow x^{2}-8 x=9} \\\\ {\Rightarrow x^{2}-8 x-9=0}\end{array}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Bl%7D%7B%5CRightarrow%20x%5E%7B2%7D-8%20x%3D9%7D%20%5C%5C%5C%5C%20%7B%5CRightarrow%20x%5E%7B2%7D-8%20x-9%3D0%7D%5Cend%7Barray%7D)
On solving above quadratic equation for x, we get
![\begin{array}{l}{\Rightarrow x^{2}-9 x+x-9=0} \\\\ {\Rightarrow x(x-9)+1(x-9)=0} \\\\ {\Rightarrow (x-9)(x+1)=0}\end{array}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Bl%7D%7B%5CRightarrow%20x%5E%7B2%7D-9%20x%2Bx-9%3D0%7D%20%5C%5C%5C%5C%20%7B%5CRightarrow%20x%28x-9%29%2B1%28x-9%29%3D0%7D%20%5C%5C%5C%5C%20%7B%5CRightarrow%20%28x-9%29%28x%2B1%29%3D0%7D%5Cend%7Barray%7D)
When ![x-9 =9, x = 9](https://tex.z-dn.net/?f=x-9%20%3D9%2C%20x%20%3D%209)
When
As width cannot be negative, so considering x = 9
![\text{ Length of rectangle }= x-8 = 9-8 = 1 \text{ unit }](https://tex.z-dn.net/?f=%5Ctext%7B%20Length%20of%20rectangle%20%7D%3D%20x-8%20%3D%209-8%20%3D%201%20%5Ctext%7B%20unit%20%7D)
Hence, Length of rectangle is 1 unit.
Answer:
Hi san, A relation from a set X to a set Y is called a function if each element of X is related to exactly one element in Y. That is, given an element x in X, there is only one element in Y that x is related to. For example, consider the following sets X and Y.
This should help you a bit.
Hello Lexi!
<u><em>Answer: ⇒⇒⇒⇒⇒⇒
</em></u>
__________________________________________________________
Step-by-step explanation:
First you had to divide by 2 from both sides of equation.
![\frac{2(x-4)}{2}=\frac{-22}{2}](https://tex.z-dn.net/?f=%5Cfrac%7B2%28x-4%29%7D%7B2%7D%3D%5Cfrac%7B-22%7D%7B2%7D)
Simplify.
![\frac{2(x-4)}{2}=x-4](https://tex.z-dn.net/?f=%5Cfrac%7B2%28x-4%29%7D%7B2%7D%3Dx-4)
![\frac{2(x-4)}{2}](https://tex.z-dn.net/?f=%5Cfrac%7B2%28x-4%29%7D%7B2%7D)
Divide by the numbers.
![\frac{2}{2}=1](https://tex.z-dn.net/?f=%5Cfrac%7B2%7D%7B2%7D%3D1)
![=x-4](https://tex.z-dn.net/?f=%3Dx-4)
![\frac{-22}{2}=-11](https://tex.z-dn.net/?f=%5Cfrac%7B-22%7D%7B2%7D%3D-11)
Apply the fraction rule.
![\frac{-22}{2}](https://tex.z-dn.net/?f=%5Cfrac%7B-22%7D%7B2%7D)
![=-\frac{22}{2}](https://tex.z-dn.net/?f=%3D-%5Cfrac%7B22%7D%7B2%7D)
Then you divide by the number.
![\frac{22}{2}=11](https://tex.z-dn.net/?f=%5Cfrac%7B22%7D%7B2%7D%3D11)
![=-11](https://tex.z-dn.net/?f=%3D-11)
![x-4=-11](https://tex.z-dn.net/?f=x-4%3D-11)
Add by 4 from both sides of equation.
![x-4+4=-11+4](https://tex.z-dn.net/?f=x-4%2B4%3D-11%2B4)
Simplify it should be the correct answer.
![x=-7](https://tex.z-dn.net/?f=x%3D-7)
___________________________________________________________________
Hope this helps!
Thank you for posting your question at here on brainly.
Have a great day!
-Charlie
_________________________________________________________________
Answer:
The answer is point C
Step-by-step explanation:
W = 2. How do we find this out?
Put "w" as "2". 8-2(2)=6(2)-8
8 - 4 = 12 - 8.
Solve.
4 = 4
Hope this helps! ☺♥