Answer:
1.68 × 10²³ Molecules
Explanation:
As we know that 1 mole of any substance contains exactly 6.022 × 10²³ particles which is also called as Avogadro's Number. So in order to calculate the number of particles (molecules) contained by 0.280 moles of Br₂, we will use following relation,
Moles = Number of Molecules ÷ 6.022 × 10²³ Molecules.mol⁻¹
Solving for Number of Molecules,
Number of Molecules = Moles × 6.022 × 10²³ Molecules.mol⁻¹
Putting values,
Number of Molecules = 0.280 mol × 6.022 × 10²³ Molecules.mol⁻¹
Number of Molecules = 1.68 × 10²³ Molecules
Hence,
There are 1.68 × 10²³ Molecules present in 0.280 moles of Br₂.
The temperature of the gas is proportional to the average kinetic energy of its molecules. Faster moving particles will collide with the container walls more frequently and with greater force. This causes the force on the walls of the container to increase and so the pressure increases.
Answer:
![AU^{3+} : [Rn] 5f^3](https://tex.z-dn.net/?f=AU%5E%7B3%2B%7D%20%3A%20%5BRn%5D%205f%5E3)
Explanation:
Writing electronic configuration of any element you should know atomic number of that element ,
and also electrons are filling according to their energy level and first electron is filled in the lower energy orbital
and it follows n+1 rule if n+1 is same for two orbital electron will go first in the lowest value of n.
writing electronic configuration of ion can be done like first for their neutral atom and then add or remove electron it will make things easy because there are also some eception case their you may do wrong.
![AU : [Rn] 5f^3 6d^1 7s^2](https://tex.z-dn.net/?f=AU%20%3A%20%5BRn%5D%205f%5E3%206d%5E1%207s%5E2)
remove three electron from outer most shell of AU
![AU^{3+} : [Rn] 5f^3](https://tex.z-dn.net/?f=AU%5E%7B3%2B%7D%20%3A%20%5BRn%5D%205f%5E3)
Answer:
NaClO3 = NaCl + O2
Explanation:
Word equation: Sodium chlorate → Sodium chloride + Oxygen gas
Answer:
it's the chloroplast but I'm not sure which on is it it might be the F.