
The branch of mechanics which deals with the motion of an object without considering the cause of motion, is known as Kinematics ~
I hope it helps ~
<h2>Answer</h2>
Option A that is 8.8 × 10^3 m/s
<h2>Explanation</h2>
The magnetic field B is defined from the Lorentz Force Law, and specifically from the magnetic force on a moving charge. It says
Field-strength = BVqsinΔ
<h2>v = E/B </h2>
Since field are perpendicular so sin90 = 1
v = 4.6/10^4 / 5.2
v = 8846.15 m /s
The speed at which electrons pass through the selector without deflection = 8846.15 m /s
All of that fluff at the beginning is interesting, but completely irrelevant
to the question. The question is just asking for the mass of an object
that weighs 3.6N on Earth.
Weight = (mass) x (acceleration of gravity)
3.6N = (mass) x (9.8 m/s²)
Divide each side
by 9.8 m/s : Mass = 3.6N / 9.8 m/s² = <em>0.367 kilogram</em> (rounded)
C
Unbalanced causes something to move because the net force is greater than zero
Answer:
I = 27.65A < 40.59°
PowerFactor = 0.76
Explanation:
Current on the heating load is:
I1 = 30KW / 4KV = 7.5A < 0°
Current on the inductive load:
I2 = (150KVA*0.6) /4KV = 22.5A with an angle of acos(0.6)=53.1°
The sum of both currents is:
It = I1 + I2 = 7.5<0° + 22.5<53.1° = 27.65<40.59°
Now, the power factor will be:
pf = cos (40.59°) = 0.76