This is known as Muscular Endurance.
Hope this helped, and please mark brainliest!
Answer : The change in momentum of an object is equal to the impulse that acts on it.
Explanation :
Change in momentum : The change in momentum of an object is the product of the mass and the change in velocity of an object.
The formula of change in momentum is,

Impulse : An impulse of an object is the product of the force applied on an object and the change in time. Impulse is also equivalent to the change in momentum of an object.

Proof :

Hence, the change in momentum of an object is equal to the impulse that acts on it.
Answer:
4 hoop, disk, sphere
Explanation:
Because
We are given data that
Hoop, disk, sphere have Same mass and radius
So let
And Initial angular velocity, = 0
The Force on each be F
And Time = t
Also let
Radius of each = r
So let's find the inertia shall we!!
I1 = m r² /2
= 0.5 mr² the his is for dis
I2 = m r² for hoop
And
Moment of inertia of sphere wiil be
I3 = (2/5) mr²
= 0.4 mr²
So
ωf = ωi + α t
= 0 + ( τ / I ) t
= ( F r / I ) t
So we can see that
ωf is inversely proportional to moment of inertia.
And so we take the
Order of I ( least to greatest ) :
I3 (sphere) , I1 (disk) , I2 (hoop) , ,
Order of ωf: ( least to greatest)
That of omega xf is the reverse of inertial so
hoop, disk, sphere
Option - 4
Answer:
i. The error is the rough convex mirror.
ii. This should be replaced with a smooth convex morror.
Explanation:
Reflection is dependent on the surface involved and has two types; diffuse and specular. When the surface is rough, diffused reflection is observed. The surface causes a distortion of the incident light (the rays would be reflected at different angles to one another) after reflection. This makes some rays to interfere with one another. While specular reflection is observed with a smooth surface.
In the statement, the rough convex mirror would produce a distorted reflection which would produce diffused reflection. The effect is that few or no rays (depending on the degree of how rough the surfce is) would be reflected to the other smooth, flat diagonal mirror.