Answer:
3054.4 km/h
Explanation:
Using the conservation of momentum
momentum before separation = 5M × 2980 Km/h where M represent the mass of the module while 4 M represent the mass of the motor
initial momentum = 14900 M km/h
let v be the new speed of the motor so that the
new momentum = 4Mv and the new momentum of the module = M ( v + 94 km/h )
total momentum = 4Mv + Mv + 93 M = 5 Mv + 93M
initial momentum = final momentum
14900 M km/h = 5 Mv + 93M
14900 km/h = 5v + 93
14900 - 93 = 5v
v = 2961.4 km/h
the speed of the module = 2961.4 + 93 = 3054.4 km/h
Answer:
The answer is 0.83 seconds.
Explanation:
The formula of free fall is following:

Where g=9.8 m/s^2 and t=2 seconds, the rock takes:

19.6 meters. This is the half distance of the cliff. The whole distance is 39.2 meters. So it takes:

2.83 second to fall down completely. The rock takes the second half of the cliff in 0.83 seconds
I think you can google this because I really don’t know the answer I’m so sorry
Static electricity. Like the balloon against hair
In my opinion the answer is B. Variation