To solve this equation, simply plug the values into the equation for calculating kinetic energy.
KE = 1/2mv^2
500 = 1/2(m)(67^2)
500 =2244.5m
m = 500/2244.5 = 0.222 kg.
For the given question above, I think there is an associated choice of answer for it. However, the answer for this is London Dispersion Forces. <span>Dipole-dipole forces and hydrogen bonding are much stronger, leading to higher melting and boiling points.</span>
C is the answer to the question
15:) using more force in your muscle will increase the force used to bounce the basketball
16:) the pulling of gravity livitation does not allow the ball to go back up with the hieght it was dropped from on the scientifical drop point
14:) <span>a weight hung from a fixed point so that it can swing freely backward and forward, especially a rod with a weight at the end that regulates the mechanism of a clock that is the deffinition of to which of the word pendulum read it do not plagarize and i hope ii helped and have a great day bye.)::</span>
155Ω
Explanation:
R = R ref ( 1 + ∝ ( T - Tref)
where R = conduction resistance at temperature T
R ref = conductor resistance at reference temperature
∝ = temperature coefficient of resistance for conductor
T = conduction temperature in degrees Celsius
T ref = reference temperature that ∝ is specified at for the conductor material
T = 600 k - 273 k = 327 °C
Tref = 300 - 273 K = 27 °C
R = 50 Ω ( 1 + 0.007 ( 327 - 27) )
R = 155Ω