A positive or direct relationship is one in which the two variables (we will generally call them x and y) move together, that is, they either increase or decrease together. In a negative or indirect relationship, the two variables move in opposite directions, that is, as one increases, the other descremases
Answer:
a) - 72.5°c
b) pressure = 3625.13 Pa
c) density = 0.063 kg/m^3
d) it is a subsonic aircraft
Explanation:
a) Determine Temperature
Temperature at 19.5 km ( 19500 m )
T = -131 + ( 0.003 * altitude in meters )
= -131 + ( 0.003 * 19500 ) = - 72.5°c
b) Determine pressure and density at 19.5 km altitude
Given :
Po (atmospheric pressure at sea level ) = 101kpa
R ( gas constant of air ) = 0.287 KJ/Kgk
T = -72.5°c ≈ 200.5 k
pressure = 3625.13 Pa
hence density = 0.063 kg/m^3
attached below is the remaining part of the solution
C) determine if the aircraft is subsonic or super sonic
Velocity ( v ) =
=
= 283.8 m/s
hence it is a subsonic aircraft
Big band is music group (a group of people who perform instrumental and/or vocal music ) playing jazz or jazz-influenced popular music and which was popular during the Swing Era from the mid-1930s until the late 1940s. These big bands contained saxophones, trumpets, trombone and other instruments and typically consisted of approximately 12 to 25 musicians.
Answer:
Average force = 3.5 kN
Explanation:
Given:
Mass of Jennifer (m) = 50 kg
Initial velocity = 35 m/s
Time taken to stop body = 0.5 s
Find:
Average force
Computation:
v = u + at
0 = 35 + a(0.5)
Acceleration (a) = - 70 m/s² = 70 m/s²
Average force = ma
Average force = (50(70)
Average force = 3500 N
Average force = 3.5 kN
Answer:



Explanation:
= Uncertainty in position = 1.9 m
= Uncertainty in momentum
h = Planck's constant = 
m = Mass of object
From Heisenberg's uncertainty principle we know

The minimum uncertainty in the momentum of the object is 
Golf ball minimum uncertainty in the momentum of the object

Uncertainty in velocity is given by

The minimum uncertainty in the object's velocity is 
Electron


The minimum uncertainty in the object's velocity is
.