Answer:
Explanation:
The torque applied by a force can be calculated as
where
F is the magnitude of the force
d is the length of the arm
is the angle between the direction of the force and the arm
In this problem, we have
F = 15 N
d = 2.0 m
Substituting into the equation, we find
Answer:
Distance travelled is 7 meters and the displacement is 3 meters
Answer:
A.
Explanation:
Geothermal energy is heat driven within the sub-surface of the earth. Water and/or steam carry the geothermal energy to the earth surface.
D is the correct answer, assuming that this is the special case of classical kinematics at constant acceleration. You can use the equation V = Vo + at, where Vo is the initial velocity, V is the final velocity, and t is the time elapsed. In D, all three of these values are given, so you simply solve for a, the acceleration.
A and C are clearly incorrect, as mass and force (in terms of projectile motion) have no effect on an object's motion. B is incorrect because it is not useful to know the position or distance traveled, unless it will help you find displacement. Even then, you would not have enough information to use a kinematics equation to find a.
The final velocity of the bullet+block is 0.799 m/s
Explanation:
We can solve this problem by applying the principle of conservation of momentum: in fact, the total momentum of the bullet-block system must be conserved before and after the collision.
Mathematically, we can write:
where
m = 0.001 kg is the mass of the bullet
u = 800 m/s is the initial velocity of the bullet
M = 1 kg is the mass of the block
U = 0 is the initial velocity of the block (initially at rest)
v is the final combined velocity of the bullet and the block
Solving the equation for v, we find the final velocity:
Learn more about conservation of momentum:
brainly.com/question/7973509
brainly.com/question/6573742
brainly.com/question/2370982
brainly.com/question/9484203
#LearnwithBrainly