The options attached to the question above are listed below:
A. Magnetic field.
B. Type of wire.
C. Velocity of the wire.
D. Length of the wire in the field.
ANSWER
The correct option is B.
The factors that determine the induced current in a system are: the number of wires in the coil, the strength of the magnetic field and speed of armature rotation [speed of cutting]. Generally, the induced electromotive force across a conductor is equal to the rate at which magnetic flux is cut by the conductor. The type of wire used does not affect the induced EMF.
The Molar concentration of your analyte solution is 1.17 m
<h3>What is titration reaction?</h3>
- Titration is a chemical analysis procedure that determines the amount of a sample's ingredient by adding a precisely known amount of another substance to the measured sample, with which the desired constituent reacts in a specific, known proportion.
Make use of the titration formula.
The formula is molarity (M) of the acid x volume (V) of the acid = molarity (M) of the base x volume (V) of the base.
if the titrant and analyte have a 1:1 mole ratio. (Molarity is a measure of a solution's concentration represented as the number of moles of solute per litre of solution.)
26 x 1.8 = 40 x M
M = 26 x1.8 /40
M = 1.17
The Molar concentration of your analyte solution is 1.17 m
To learn more about Titration refer,
brainly.com/question/186765
#SPJ4
Answer:
1.72 M
Explanation:
Molarity is the molar concentration of a solution. It can be calculated using the formula a follows:
Molarity = number of moles (n? ÷ volume (V)
According to the information provided in this question, the solution has 58.7 grams of MgCl2 in 359 ml of solution.
Using mole = mass/molar mass
Molar mass of MgCl2 = 24 + 35.5(2)
= 24 + 71
= 95g/mol
mole = 58.7g ÷ 95g/mol
mole = 0.618mol
Volume of solution = 359ml = 359/1000 = 0.359L
Molarity = 0.618mol ÷ 0.359L
Molarity = 1.72 M
Answer:
Evaporation
Explanation:
Evaporation is the certain process that requires water to gain heat energy from the environment.