Answer:
K = Ka/Kb
Explanation:
P(s) + (3/2) Cl₂(g) <-------> PCl₃(g) K = ?
P(s) + (5/2) Cl₂(g) <--------> PCl₅(g) Ka
PCl₃(g) + Cl₂(g) <---------> PCl₅(g) Kb
K = [PCl₃]/ ([P] [Cl₂]⁽³'²⁾)
Ka = [PCl₅]/ ([P] [Cl₂]⁽⁵'²⁾)
Kb = [PCl₅]/ ([PCl₃] [Cl₂])
Since [PCl₅] = [PCl₅]
From the Ka equation,
[PCl₅] = Ka ([P] [Cl₂]⁽⁵'²⁾)
From the Kb equation
[PCl₅] = Kb ([PCl₃] [Cl₂])
Equating them
Ka ([P] [Cl₂]⁽⁵'²⁾) = Kb ([PCl₃] [Cl₂])
(Ka/Kb) = ([PCl₃] [Cl₂]) / ([P] [Cl₂]⁽⁵'²⁾)
(Ka/Kb) = [PCl₃] / ([P] [Cl₂]⁽³'²⁾)
Comparing this with the equation for the overall equilibrium constant
K = Ka/Kb
Answer:
The relationship of the speed of sound, its frequency, and wavelength is the same as for all waves: vw = fλ, where vw is the speed of sound, f is its frequency, and λ is its wavelength. ... The more rigid (or less compressible) the medium, the faster the speed of sound
Explanation:
The delta H of -484 kJ is the heat given off when 2 moles of H2 react with 1 mole of O2 to make 2 moles of H2O. You don't have anywhere near that much reactants, only 1/4 as much
<span>actual delta H = 0.34 moles H2 x (-484 kJ / 2 moles H2) = 823 kJ </span>
<span>delta E = delta H - PdeltaV = 823 kJ - 0.41 kJ = 822 kJ</span>
First, we have to calculate the number of moles of H2SO4 in the solution:
V=60 mL = 0.06 L
c=5.85 mol/L
n=V×c=0.06×5.85=0.351 mol
Then we need to find the molar mass of H2SO4:
2×Ar(H) + Ar(S) + 4×Ar(O) =
=2 + 32 + 64 = 98 g/mol
Finally, we need to find the mass of H2SO4:
m=0.351 × 98 = 34.398 g
4 m/s^2
I hope this helps!