Answer:
It does both. Once they get close enough the air does start to get charged, but then they eventually discharge when they touch.
Explanation:
Answer:
Mass of the cart = 146 kg
Explanation:
A cart is pulled by a force of 250 N at an angle of 35° above the horizontal.
The cart accelerates at 1.4 m/s² horizontally.
Horizontal force = Fcosθ = 250 cos35° = 204.79N
We have F = ma
Substituting
204.79 = m x 1.4
m = 146.28 kg = 146 kg
Mass of the cart = 146 kg
Answer:
contains many young stars
Explanation:
Irregular galaxies have <em>no definite shape</em>, which means that the first option is incorrect. They are definitely not round.
However,<u> they contain many young stars because the degree of star formation is fast.</u> They also contain old stars. Thus, the second choice is correct.
The "spiral galaxy" is the type of galaxy that has arms that extend from the center. These arms look "spiral," which influenced its name. This makes the last choice incorrect.
They are actually <u>smaller than the other types of galaxies.</u> This makes them <em>prone to collisions</em>. This makes the last choice incorrect.
Answer:
the answer is B
Explanation:
speed is the rate at which the distance covered changes or the distance divided by the time taken.
scalar is always positive.
<u>The motions of the gas and stars at the center indicate that it contains 4 million solar masses within a region no larger than our solar system</u> is the evidence supports the existence of a very massive black hole at the center of our galaxy.
<h3>
What is black hole?</h3>
Black holes are points in space that are so dense they create deep gravity sinks. Beyond a certain region, not even light can escape the powerful tug of a black hole's gravity. And anything that ventures too close—be it star, planet, or spacecraft—will be stretched and compressed like putty in a theoretical process aptly known as spaghettification.
There are four types of black holes: stellar, intermediate, supermassive, and miniature. The most commonly known way a black hole forms is by stellar death. As stars reach the ends of their lives, most will inflate, lose mass, and then cool to form white dwarfs. But the largest of these fiery bodies, those at least 10 to 20 times as massive as our own sun, are destined to become either super-dense neutron stars or so-called stellar-mass black holes.
Learn more about black holes
brainly.com/question/13002947
#SPJ4