Answer:
How to find the maximum height of a projectile?
if α = 90°, then the formula simplifies to: hmax = h + V₀² / (2 * g) and the time of flight is the longest. ...
if α = 45°, then the equation may be written as: ...
if α = 0°, then vertical velocity is equal to 0 (Vy = 0), and that's the case of horizontal projectile motion.
Answer:
72.75 kg m^2
Explanation:
initial angular velocity, ω = 35 rpm
final angular velocity, ω' = 19 rpm
mass of child, m = 15.5 kg
distance from the centre, d = 1.55 m
Let the moment of inertia of the merry go round is I.
Use the concept of conservation of angular momentum
I ω = I' ω'
where I' be the moment of inertia of merry go round and child
I x 35 = ( I + md^2) ω'
I x 35 = ( I + 25.5 x 1.55 x 1.55) x 19
35 I = 19 I + 1164
16 I = 1164
I = 72.75 kg m^2
Thus, the moment of inertia of the merry go round is 72.75 kg m^2.
Answer:
Yes it is balanced
Explanation:
Because 10-10= a net force of 0N
Its equal (balanced)
Answer:
he formula for the gravitational force includes the gravitational constant, which has a value . The unit of the gravitational force is Newtons (N). Fg = gravitational force between two objects ( ) G = gravitational constant ( ) m1 = mass of the first object (kg)
Explanation:
brainlist ?