1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vodka [1.7K]
3 years ago
13

A 95 kg clock initially at rest on a horizontal floor requires a 650 n horizontal force to set it in motion. after the clock is

in motion, a horizontal force of 560 n keeps it moving with a constant velocity.a) what is the μs between the clock and the floor?.70b) what is the μk between the clock and the floor?
Physics
2 answers:
iogann1982 [59]3 years ago
8 0

Explanation:

Mass of the clock, m = 95 kg

The horizontal force acting on the clock to set it in motion, F=650\ N

A horizontal force to keep it moving is, F' = 560 N

Let \mu_s is the coefficient of static friction. The horizontal force acting on the clock to set it in motion is given by :

F=\mu_sN

F=\mu_s\times mg

\mu_s=\dfrac{F}{mg}

\mu_s=\dfrac{650}{95\times 9.8}

\mu_s=0.69

Let \mu_k is the coefficient of static friction. The force due to motion of the clock is given by :

F'=\mu_kN

F'=\mu_k\times mg

\mu_k=\dfrac{F'}{mg}

\mu_k=\dfrac{560}{95\times 9.8}

\mu_k=0.60

Hence, this is the required solution.

Tamiku [17]3 years ago
3 0
The μs between the clock and floor is 650(M*g) and the μk between the clock and the floor is 560(M*g)
You might be interested in
URGENT PLEASE ANSWER THIS ASAP I WILL MARK YOU THE BRAINLIEST !!!
Svetlanka [38]

Answer:

An electrical current

Explanation:

An electrical current

4 0
3 years ago
Starting from rest, a basketball rolls from top of a hill to the bottom, reaching a translational speed of 6.8 m/s. Ignore frict
kkurt [141]

Answer:

Explanation:

for baseball

(a) Let the mass of the baseball is m.

radius of baseball is r.

Total kinetic energy of the baseball, T = rotational kinetic energy + translational kinetic energy

T = 0.5 Iω² + 0.5 mv²

Where, I be the moment of inertia and ω be the angular speed.

ω = v/r

T = 0.5 x 2/3 mr² x v²/r² + 0.5 mv²

T = 0.83 mv²

According to the conservation of energy, the total kinetic energy at the bottom is equal to the total potential energy at the top.

m g h = 0.83 mv²

where, h be the height of the top of the hill.

9.8 x h = 0.83 x 6.8 x 6.8

h = 3.93 m

(b) Let the velocity of juice can is v'.

moment of inertia of the juice can = 1/2mr²

So, total kinetic energy

T = 0.5 x I x ω² + 0.5 mv²

T = 0.5 x 0.5 x m x r² x v²/r² + 0.5 mv²

m g h = 0.75 mv²

9.8 x 3.93 = 0.75 v²

v = 7.2 m/s

7 0
3 years ago
A Hall probe, consisting of a rectangular slab of current-carrying material, is calibrated by placing it in a known magnetic fie
Citrus2011 [14]

Answer:

(a) 0.345 T

(b) 0.389 T

Solution:

As per the question:

Hall emf, V_{Hall} = 20\ mV = 0.02\ V

Magnetic Field, B = 0.10 T

Hall emf, V'_{Hall} = 69\ mV = 0.069\ V

Now,

Drift velocity, v_{d} = \frac{V_{Hall}}{B}

v_{d} = \frac{0.02}{0.10} = 0.2\ m/s

Now, the expression for the electric field is given by:

E_{Hall} = Bv_{d}sin\theta                            (1)

And

E_{Hall} = V_{Hall}d

Thus eqn (1) becomes

V_{Hall}d = dBv_{d}sin\theta

where

d = distance

B = \frac{V_{Hall}}{v_{d}sin\theta}                      (2)

(a) When \theta = 90^{\circ}

B = \frac{0.069}{0.2\times sin90} = 0.345\ T

(b) When \theta = 60^{\circ}

B = \frac{0.069}{0.2\times sin60} = 0.398\ T

5 0
3 years ago
Un the way to the moon, the Apollo astro-
kherson [118]

Answer:

Distance =  345719139.4[m]; acceleration = 3.33*10^{19} [m/s^2]

Explanation:

We can solve this problem by using Newton's universal gravitation law.

In the attached image we can find a schematic of the locations of the Earth and the moon and that the sum of the distances re plus rm will be equal to the distance given as initial data in the problem rt = 3.84 × 108 m

r_{e} = distance earth to the astronaut [m].\\r_{m} = distance moon to the astronaut [m]\\r_{t} = total distance = 3.84*10^8[m]

Now the key to solving this problem is to establish a point of equalisation of both forces, i.e. the point where the Earth pulls the astronaut with the same force as the moon pulls the astronaut.

Mathematically this equals:

F_{e} = F_{m}\\F_{e} =G*\frac{m_{e} *m_{a}}{r_{e}^{2}  } \\

F_{m} =G*\frac{m_{m}*m_{a}  }{r_{m} ^{2} } \\where:\\G = gravity constant = 6.67*10^{-11}[\frac{N*m^{2} }{kg^{2} } ] \\m_{e}= earth's mass = 5.98*10^{24}[kg]\\ m_{a}= astronaut mass = 100[kg]\\m_{m}= moon's mass = 7.36*10^{22}[kg]

When we match these equations the masses cancel out as the universal gravitational constant

G*\frac{m_{e} *m_{a} }{r_{e}^{2}  } = G*\frac{m_{m} *m_{a} }{r_{m}^{2}  }\\\frac{m_{e} }{r_{e}^{2}  } = \frac{m_{m} }{r_{m}^{2}  }

To solve this equation we have to replace the first equation of related with the distances.

\frac{m_{e} }{r_{e}^{2}  } = \frac{m_{m} }{r_{m}^{2} } \\\frac{5.98*10^{24} }{(3.84*10^{8}-r_{m}  )^{2}  } = \frac{7.36*10^{22}  }{r_{m}^{2} }\\81.25*r_{m}^{2}=r_{m}^{2}-768*10^{6}* r_{m}+1.47*10^{17}  \\80.25*r_{m}^{2}+768*10^{6}* r_{m}-1.47*10^{17} =0

Now, we have a second-degree equation, the only way to solve it is by using the formula of the quadratic equation.

r_{m1,2}=\frac{-b+- \sqrt{b^{2}-4*a*c }  }{2*a}\\  where:\\a=80.25\\b=768*10^{6} \\c = -1.47*10^{17} \\replacing:\\r_{m1,2}=\frac{-768*10^{6}+- \sqrt{(768*10^{6})^{2}-4*80.25*(-1.47*10^{17}) }  }{2*80.25}\\\\r_{m1}= 38280860.6[m] \\r_{m2}=-2.97*10^{17} [m]

We work with positive value

rm = 38280860.6[m] = 38280.86[km]

<u>Second part</u>

<u />

The distance between the Earth and this point is calculated as follows:

re = 3.84 108 - 38280860.6 = 345719139.4[m]

Now the acceleration can be found as follows:

a = G*\frac{m_{e} }{r_{e} ^{2} } \\a = 6.67*10^{11} *\frac{5.98*10^{24} }{(345.72*10^{6})^{2}  } \\a=3.33*10^{19} [m/s^2]

6 0
3 years ago
A horizontal aquifer is overlain by 73.5 ft of water-saturated clay with a porosity of 0.4. The solid density of the clay partic
mr_godi [17]

Answer:

Explanation:

solution is in the attachment below

5 0
3 years ago
Other questions:
  • a 5.5 kg box is pushed across the lunch table.the net force applied to the box is 9.7 N.what is the acceleration of the box?
    11·1 answer
  • Cecily is inflating one of her bicycle tyres with the pump below. When she pushes the plunger down, does the volume of the gas i
    14·1 answer
  • PLEASE ANSWER ASAP!!
    14·2 answers
  • Help DUE TONIGHT!
    12·1 answer
  • A 1.00- and a 2.00- resistor are in parallel. What is the equivalent single resistance? ​
    7·1 answer
  • The loudness of sound is the wave's ____.
    15·2 answers
  • Both atypical and traditional antipsychotics _____ levels of _____.
    8·1 answer
  • True or false an hypothesis is a statement that describes how to measure a particular variable or define a particular term
    11·1 answer
  • An object blocks the path of a wave causing the wave to change direction is called what
    11·2 answers
  • Hằng số phổ biến chất khí
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!