The first model of the atom was developed by JJ Thomson in 1904, who thought that atoms were composed purely of negatively charged electrons. This model was known as the 'plum pudding' model.
This theory was then disproved by Ernest Rutherford and the gold foil experiment in 1911, where Rutherford shot alpha particles at gold foil, and noticed that some went through and some bounced back, implying the existence of a positive nucleus.
In 1913, Niels Bohr proposed a model of the atom where the electrons were contained within quantized shells that orbited the nucleus. This was because it was impossible for the cloud of negative electrons proposed by Rutherford to exist, as the negative electrons would be drawn to the positive nucleus, and the atom would collapse in on itself.
In 1926, the Austrian physicist Erwin Schrödinger created a quantum mechanical model of the atom by combining the equations for the behavior of waves with the de Broglie equation to generate a mathematical model for the distribution of electrons in an atom.
However the model used today is closest to the Bohr model of the atom, using the quantized shells to contain the electrons.
For more info:
http://chemistry.about.com/od/chemistryglossary/a/debroglieeqdef.htm
Answer:
Argument in favor of less total energy consumption if the store is kept at a low temperature
Explanation:
Have in mind that if the store has numerous refrigerators and freezers, the energy consumption of those machines have to be included into the analysis.
Recall that the efficiency (or Coefficient Of Performance - COP) of a frezzer or refrigerator is inversely proportional to the temperature difference between the inside of th machine and the environment where it is operation, therefore the smaller the difference, the highest their efficiency. Therefore, the cooler the environment (the temperature at which the store is kept) the better performance of the running refrigerators and freezers.
Lower the resistance to sliding.
Answer:
Transition has to cross between solid and liquid in gray zone.No indoor organized public events and social gatherings are allowed, except with members of the same household.
Energy is the one that is stored in the ball when it drops. Just before it hits the ground, the energy depends on the mass of the ball and its velocity. When the ball hits, it is compressed and the energy is stored in the compression of the air in the ball and the elasticity of the material that the ball is made from. Some is also converted to heat. The stored energy in the ball causes a force to make the ball back into a round shape and this force presses against the propels and floor the ball back up. The small amount lost as heat is the reason that the ball bounces up with less energy than when it hit.