I would say B but I have no clue
The relation between temperature and pressure is called the "equation of state of the gas". or "Hydrostatic equilibrium in ordinary star". Take for example a balloon, it will have a larger spherical shape, if the pressure inside exerted by the gas on a wall of a balloon balance the inward force exerted by the outside atmospheric pressure. In a dying star which is being compressed by gravity, the gas is being squeezed so the molecules is moving rapidly, resulting to a very high temperature, and this provide a balance that counteract or balances the compressive force of gravity. The very high temperature inside the star is needed to balance the force of gravity, and it is provide by "nuclear fusion energy" or else the star would collapse under the force of gravity. Depending on the size or mass of the star, it will either become, a "neutron star" or a "black hole".
Answer:
The mechanical advantage of the system is 8
Explanation:
the mechanical advantage measures how much the system multiplies the input force to get the output.
In the given:
The input force (effort) is 20 Newton
The output force (load) is 160 Newton
This means that the mechanical advantage is:
mechanical advantage = load / effort = 160 / 20 = 8
Note that the mechanical advantage is unit-less (has no unit) since it is a ratio between two forces.
Hope this helps :)
The initial position of the object was found to be 134.09 m.
<u>Explanation:</u>
As displacement is the measure of difference between the final and initial points. In other words, we can say that displacement can be termed as the change in the position of the object irrespective of the path followed by the object to change the path. So
Displacement = Final position - Initial position.
As the final position is stated as -55.25 meters and the displacement is also stated as -189.34 meters. So the initial position will be
Initial position of the object = Final position-Displacement
Initial position = -55.25 m - (-189.34 m) = -55.25 m + 189.34 m = 134.09 m.
Thus, the initial position for the object having a displacement of -189.34 m is determined as 134.09 m.
I remember c/d. That's not a problem. But if you want 'c', you'll have to give me 'd'.