Answer:
a)
two like charges always repel each other while two unlike charges attract each other. Since the spring stretches by 0.039 m, the charges have the same sign. both charges are positive(+) or Negative (-)
b)
both q1 and q1 are 8.35 × 10⁻⁶ C or -8.35 × 10⁻⁶ C
Explanation:
Given that;
L = 0.26 m
k = 180 N/m
x = 0.039 m
a)
we know that two like charges always repel each other while two unlike charges attract each other. Since the spring stretches by 0.039 m, the charges have the same sign.
b)
Spring force F = kx
F = 180 × 0.039
F = 7.02 N
Now, Electrostatic force F = Keq²/r²
where r = L + x = ( 0.26 + 0.039 )
we know that proportionality constant in electrostatics equations Ke = 9×10⁹ kg⋅m3⋅s−2⋅C−2
so from the equation; F = Keq²/r²
Fr² = Keq²
q = √ ( Fr² / Ke )
we substitute
q = √ ( 7.02 N × ( 0.26 + 0.039 )² / 9×10⁹ )
q = √ ( 7.02 N × ( 0.26 + 0.039 )² / 9×10⁹ )
q = √ (0.627595 / 9×10⁹)
q = √(6.97 × 10⁻¹¹)
q = 8.35 × 10⁻⁶ C
Therefore both q1 and q1 are 8.35 × 10⁻⁶ C or -8.35 × 10⁻⁶ C
Kinetic energy is energy that is in motion, thats all I remember
<span>There's nothing on that list that may be damaged by increase in solar activity.
</span>
Incomplete question.The Complete question is here
A flat uniform circular disk (radius = 2.00 m, mass = 1.00 ✕ 102 kg) is initially stationary. The disk is free to rotate in the horizontal plane about a friction less axis perpendicular to the center of the disk. A 40.0-kg person, standing 1.25 m from the axis, begins to run on the disk in a circular path and has a tangential speed of 2.00 m/s relative to the ground.
a.) Find the resulting angular speed of the disk (in rad/s) and describe the direction of the rotation.
b.) Determine the time it takes for a spot marking the starting point to pass again beneath the runner's feet.
Answer:
(a)ω = 1 rad/s
(b)t = 2.41 s
Explanation:
(a) initial angular momentum = final angular momentum
0 = L for disk + L............... for runner
0 = Iω² - mv²r ...................they're opposite in direction
0 = (MR²/2)(ω²) - mv²r
................where is ω is angular speed which is required in part (a) of question
0 = [(1.00×10²kg)(2.00 m)² / 2](ω²) - (40.0 kg)(2.00 m/s)²(1.25 m)
0=200ω²-200
200=200ω²
ω = 1 rad/s
b.)
lets assume the "starting point" is a point marked on the disk.
The person's angular speed is
v/r = (2.00 m/s) / (1.25 m) = 1.6 rad/s
As the person and the disk are moving in opposite directions, the person will run part of a revolution and the turning disk would complete the whole revolution.
(angle) + (angle disk turns) = 2π
(1.6 rad/s)(t) + ωt = 2π
t[1.6 rad/s + 1 rad/s] = 2π
t = 2.41 s