Answer:
4.80 seconds
Explanation:
The velocity of sound is obtained from;
V= 2d/t
Where;
V= velocity of sound = 329.2 ms-1
d= distance from the wall = 790.5 m
t= time = the unknown
t= 2d/V
t= 2 × 790.5/ 329.2
t= 4.80 seconds
Answer:
i = 0.477 10⁴ B
the current flows in the counterclockwise
Explanation:
For this exercise let's use the Ampere law
∫ B . ds = μ₀ I
Where the path is closed
Let's start by locating the current vines that are parallel to the z-axis, so it must be exterminated along the x-axis and as the specific direction is not indicated, suppose it extends along the y-axis.
From BiotSavart's law, the field must be perpendicular to the direction of the current, so the magnetic field must go in the x direction.
We apply the law of Ampere the segment parallel to the x-axis is the one that contributes to the integral, since the other two have an angle of 90º with the magnetic field
Segment on the y axis
L₀ = (y2-y1)
L₀ = 3-0 = 3 cm
Segment on the point x = 2 cm
L₁ = 3-0
L₁ = 3cm
B L = μ₀ I
B 2L = μ₀ I
i = 2 L B /μ₀
i= 2 0.03 / 4π 10⁻⁷ B
i = 4.77 10⁴ B
The current is perpendicular to the magnetic field whereby the current flows in the counterclockwise
Answer:
Hz
Explanation:
In alternating current (AC) circuits, voltage (V) oscillates in a sine wave pattern and has a general equation as a function of time (t) as follows;
V(t) = V sin (ωt + Ф) -----------------(i)
Where;
V = amplitude value of the voltage
ω = angular frequency = 2 π f [f = cyclic frequency or simply, frequency]
Ф = phase difference between voltage and current.
<u><em>Now,</em></u>
From the question,
V(t) = 230 sin (100t) ---------------(ii)
<em><u>By comparing equations (i) and (ii) the following holds;</u></em>
V = 230
ω = 100
Ф = 0
<em><u>But;</u></em>
ω = 2 π f = 100
2 π f = 100 [divide both sides by 2]
π f = 50
f =
Hz
Therefore, the frequency of the voltage is
Hz
Answer:
2.74
Explanation:
Magnification = image distance/object distance
Mag = v/u
Given
v = 46cm
u = 16.8
Magnification = 46/16.8
Magnification = 2.74
Hence the magnification is 2.74
Answer:
Explanation:
a ) Time period T = 2 s
Angular velocity ω = 2π / T
= 2π / 2 = 3.14 rad /s
Initial moment of inertia I₁ = 200 + mr²
= 200 + 25 x 2.5²
=356.25
Final moment of inertia
I₂ = 200 + 25 X 1.5 X 1.5
= 256.25
b ) We apply law of conservation of momentum
I₁ X ω₁ = I₂ X ω₂
ω₂ = I₁ X ω₁ / I₂
Putting the values

ω₂ = 4.365 rad s⁻¹
c ) Increase in rotational kinetic energy
=1/2 I₂ X ω₂² - 1/2 I₁ X ω₁²
.5 X 256.25 X 4.365² - .5 X 356.25 X 3.14²
= 684.95 J
This energy comes from work done against the centripetal pseudo -force.