1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
juin [17]
3 years ago
5

How long does it take to go blind looking at the sun?

Physics
2 answers:
Valentin [98]3 years ago
8 0
You could do it in just a couple of seconds if you really try. Find a place that's close to the equator, then do it on a day close to March 21 or September 21, at 12:00 noon, when the air is really clear. Keep your eyes wide open and don't squint. Good luck ! I know you can do it !
kondaur [170]3 years ago
7 0
Could be with a click of a finger depending how strong the light of the sun is
You might be interested in
Which mass is the same as 0.031 g?
LenaWriter [7]

0.031 g is equal to 31 grams

6 0
3 years ago
Read 2 more answers
Find the horizontal component and the vertical component ​
aleksandr82 [10.1K]

Answer:

v=3.66,h-3.66

Explanation:

vertical = 10sin60 - 10sin 30

horizontal =10cos60 + 10cos 30

v = 10×0.8660-10×0.5

h = 10×0.5 + 10 × 0.8660

v=8.660-5.0 = 3.66

h= 5.0-8.660 = -3.66

8 0
3 years ago
Determine the moment of inertia Ixx of the mallet about the x-axis. The density of the wooden handle is 860 kg/m3 and that of th
Yuki888 [10]

Complete Question

Diagram for this  shown on the first uploaded image

Answer:

The moment of inertia Ixx of the mallet about the x-axis is I{xx}= 0.119 kg \cdot m^2

Explanation:

From the question we are told that

        The density `of wooden handle is  \rho_w = 860 kg/m^3

        The density `of soft-metal head  is \rho_s =8000kg/m^3

Generally the mass of the wooden can be mathematically obtained with this formula

          m_w = \rho_w A_w l_w

Where A_w is mass of wooden handle which is  mathematically obtain with the formula

             A_w = \frac{\pi}{4} d^2_w

Where d_w is the diameter  of the wooden handle which from the diagram is

       27mm = \frac{27}{1000} = 0.027m

So  A_w = \frac{\pi}{4} * 0.027^2

      l_w is the length of the the wooden handle which is given in the diagram as   l_w = 315mm = \frac{315}{1000} = 0.315m

Substituting these value into the formula for mass

      m_w = 860 * (\frac{\pi}{4} * 0.027^2 ) *0.315

            = 0.155kg

Generally the mass of the soft-metal head can be mathematically obtained with this formula

           m_s = \rho_s A_s l_s

Where A_s is mass of soft-metal head which is  mathematically obtain with the formula

            A_s = \frac{\pi}{4} d^2_s

Where d_s is the diameter  of the soft-metal head which from the diagram is            

       36mm = \frac{36}{1000} = 0.036m

So  A_s = \frac{\pi}{4} * 0.036^2

 l_s is the length of the the soft-metal head which is given in the diagram

     as   l_s = 90mm = \frac{90}{1000} = 0.090m

Substituting these value into the formula for mass  

                  m_s = 8000 * (\frac{\pi}{4} * 0.036^2 ) *0.090

                       =0.733kg

Generally the mass moment of inertia about x-axis for the wooden handle is

                  (I_{xx})_w  =    [\frac{1}{3}m_w + l_w^2 ]  

Substituting values

                   (I_{xx})_w  =    [\frac{1}{3}*0.155 + 0.315^2 ]

                              =5.12*10^{-3}kg \cdot m^2  

Generally the mass moment of inertia about x-axis for the soft-metal head is

    (I_{xx})_s = [\frac{1}{12}m_s l_s ^2 + b^2]

Where b is the distance from the centroid to the axis of the head which is mathematically given as

                   b=l_w +\frac{d_s}{2}

Substituting values

                 b = 0.315 + \frac{0.036}{2}

                    = 0.336m

Now substituting values into the formula for mass moment of inertia about x-axis for soft-metal head

                            (I_{xx})_s = [\frac{1}{12} *0.733*  0.090^2 + 0.336^2]

                                      =0.113 kg \cdot m^2

Generally the mass moment of inertia about x-axis is mathematically represented as

         I_{xx} = (I_{xx})_w + (I_{xx})_s

                = [\frac{1}{3}m_w + l_w^2 ] + [\frac{1}{12}m_s l_s ^2 + b^2]

Substituting values

        I_{xx} = 5.12*10^{-3} +0.113

               I{xx}= 0.119 kg \cdot m^2

             

             

8 0
3 years ago
If you push a 200 kg box with a horizontal force of 1,172 N and kinetic friction resists the motion with a force of 962 N, what
Lynna [10]

Answer:

a = 1.05m.s²

Explanation:

Fnet = m×a

Fapplied - friction = m×a

1172 - 962 = 200 × a

210 = 200a

a = 1.05

5 0
2 years ago
A point charge of -4.28 pC is fixed on the y-axis, 2.79 mm from the origin. What is the electric field produced by this charge a
makkiz [27]

Answer:

E = (-3.61^i+1.02^j) N/C

magnitude E = 3.75N/C

Explanation:

In order to calculate the electric field at the point P, you use the following formula, which takes into account the components of the electric field vector:

\vec{E}=-k\frac{q}{r^2}cos\theta\ \hat{i}+k\frac{q}{r^2}sin\theta\ \hat{j}\\\\\vec{E}=k\frac{q^2}{r}[-cos\theta\ \hat{i}+sin\theta\ \hat{j}]              (1)

Where the minus sign means that the electric field point to the charge.

k: Coulomb's constant = 8.98*10^9Nm^2/C^2

q = -4.28 pC = -4.28*10^-12C

r: distance to the charge from the point P

The point P is at the point (0,9.83mm)

θ: angle between the electric field vector and the x-axis

The angle is calculated as follow:

\theta=tan^{-1}(\frac{2.79mm}{9.83mm})=74.15\°

The distance r is:

r=\sqrt{(2.79mm)^2+(9.83mm)^2}=10.21mm=10.21*10^{-3}m

You replace the values of all parameters in the equation (1):

\vec{E}=(8.98*10^9Nm^2/C^2)\frac{4.28*10^{-12}C}{(10.21*10^{-3}m)}[-cos(15.84\°)\hat{i}+sin(15.84\°)\hat{j}]\\\\\vec{E}=(-3.61\hat{i}+1.02\hat{j})\frac{N}{C}\\\\|\vec{E}|=\sqrt{(3.61)^2+(1.02)^2}\frac{N}{C}=3.75\frac{N}{C}

The electric field is E = (-3.61^i+1.02^j) N/C with a a magnitude of 3.75N/C

8 0
3 years ago
Other questions:
  • What is tan(61)?<br> А. 1.80<br> B. 0.49<br> C. 0.61<br> D. 0.87
    15·1 answer
  • A block of ice at 0 degrees C, whose mass is initially 62 kg, slides along a horizontal surface, starting at a speed of 5.48 m/s
    15·1 answer
  • Which fundamental force is responsible for some kinds of radioactivity
    11·1 answer
  • Which of the following statements concerning the lab is TRUE?
    7·1 answer
  • In a inverse relationship, when one variable increases, the other
    11·1 answer
  • Which statement is true about two isotopes of the same element? (1 point)
    8·2 answers
  • explain which properties of metals make sterling silver the best material for you to create hammered earrings.
    12·1 answer
  • You witness two of your class mates yelling at each other in a heated argument. this is an example of
    5·2 answers
  • Give the definition for diffusion.
    15·1 answer
  • 1 (KE, PE) An object of mass 90 lbm is projected straight upward from the surface of the earth and reaches a height of 900 ft wh
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!