Answer:
Frequency
Explanation:
The frequency ( ) of a wave is the number of waves passing a point in a certain time.
Answer:
(a) Heat transfer to the environment is: 1 MJ and (b) The efficiency of the engine is: 41.5%
Explanation:
Using the formula that relate heat and work from the thermodynamic theory as:
solving to Q_out we get:
this is the heat out of the cycle or engine, so it will be heat transfer to the environment. The thermal efficiency of a Carnot cycle gives us:
where T_Low is the lowest cycle temperature and T_High the highest, we need to remember that a Carnot cycle depends only on the absolute temperatures, if you remember the convertion of K=°C+273.15 so T_Low=150+273.15=423.15 K and T_High=450+273.15=723.15K and replacing the values in the equation we get:
The correct answer is:

Let's see why.
1 amu corresponds to the mass of the proton, which is:

if we convert this into energy, using Einstein equivalence between mass and energy, we find:

Now we can convert it into electronvolts:

So, 1 amu = 934 MeV. Therefore, 3 amu corresponds to 3 times this value:
Answer:
false, because a phase change occurs physical changes when matter changes its energy state.
Answer:
C 0.85 j/g*k
Explanation:
The specific heat capacity of a material is given by:

where
Q is the amount of heat supplied to the object
m is the mass of the object
is the increase in temperature of the object
For the object in this problem, we have
m = 117 g is the mass
Q = 1200 J is the heat supplied
is the increase in temperature
Substituting into the formula, we find the specific heat:
