A. High intermolecular forces of attraction. If there are high intermolecular forces, the molecules will need large energies to escape into the liquid. The substance will nave a high melting point.
The other options are <em>incorrect </em>because they are <em>weak force</em>s. They would cause <em>low melting points</em>.
Any element in group 18 has eight valence electrons (except for helium, which has a total of just two electrons). Examples include neon (Ne), argon (Ar), and krypton (Kr). Oxygen, like all the other elements in group 16, has six valence electrons.
Molar mass of N = 14 g/molMolar mass of O2 = 32 g/molAdding both masses = 46 g/molActual molar mass/ Empirical molar mass = 138.02 / 46 = 3Now multiplying this co effecient with empirical fomula NO2 = 3(NO2) = N3O6So according to above explanation,D) N3O6, is the correct answer.
Answer:
4380 mmHg
Explanation:
Boyle's Law can be used to explain the relationship between pressure and volume of an ideal gas. The pressure is inversely related to volume, so if volume decrease the pressure will increase. It can be expressed in the equation as:
P1V1=P2V2
In this question, the first condition is 2L volume and 876 mmHg pressure. Then the system changed into the second condition where the volume is 400ml and the pressure is unknown. The pressure will be:
P1V1= P2V2
876 mmHg * 2L = P2 * 400ml /(1000ml/L)
P2= 876 mmHg * 2L / 0.4L
P2= 4380 mmHg