The distance covered will be 0.301m.
firstly we will new to calculate acceleration (a).
we can do so using newtons first law of motion.
v=u + a × t
where
a is the acceleration
t is the time
from here we get
a=(v-u)/t
a=(4-0)/0.15
a=26.67m/s²
using newtons second law of motion
s=u.t+1/2at²
where s is distance travelled in t seconds.
we get,
s=0.301m
learn more about newtons law of motion here:
brainly.com/question/129361
#SPJ4
Answer:
<em>The person needs to apply 25 N to balance the seesaw</em>
Explanation:
<u>Moment</u>
The moment of a force is a measure of its tendency to cause a body to rotate about a specific point or axis.
The moment M of a force F located at a distance x from the axis of rotation is calculated as follows:
M = F.x
The image shows a moment of M=100 N.m is needed to be applied to balance the seesaw. It can also be noted that the distance to the pivot is x=4 m
To calculate the force needed to balance the seesaw, we solve for F:


F = 25 N
The person needs to apply 25 N to balance the seesaw
Answer:
T'=92.70°C
Explanation:
To find the temperature of the gas you use the equation for ideal gases:

V: volume = 3000cm^3 = 3L
P: pressure = 1250mmHg; 1 mmHg = 0.001315 atm
n: number of moles
R: ideal gas constant = 0.082 atm.L/mol.K
T: temperature = 27°C = 300.15K
For the given values you firs calculate the number n of moles:
![n=\frac{PV}{RT}=\frac{(1520[0.001315atm])(3L)}{(0.082\frac{atm.L}{mol.K})(300.15K)}=0.200moles](https://tex.z-dn.net/?f=n%3D%5Cfrac%7BPV%7D%7BRT%7D%3D%5Cfrac%7B%281520%5B0.001315atm%5D%29%283L%29%7D%7B%280.082%5Cfrac%7Batm.L%7D%7Bmol.K%7D%29%28300.15K%29%7D%3D0.200moles)
this values of moles must conserve when the other parameter change. Hence, you have V'=2L and P'=3atm. The new temperature is given by:

hence, T'=92.70°C