Answer:
$3.50 each
Step-by-step explanation:
First subtract the drink price from the total,$8.50-$1.50=$7. then divide that amount by 2 since he got 2 burgers. $7/2=$3.50.Each burger is $3.50.
Check the picture below. so, that'd be the triangle's sides hmmm so let's use Heron's Area formula for it.
![~\hfill \stackrel{\textit{\large distance between 2 points}}{d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2}}~\hfill~ \\\\[-0.35em] ~\dotfill\\\\ (\stackrel{x_1}{10}~,~\stackrel{y_1}{5})\qquad (\stackrel{x_2}{15}~,~\stackrel{y_2}{15}) ~\hfill a=\sqrt{[ 15- 10]^2 + [ 15- 5]^2} \\\\\\ ~\hfill \boxed{a=\sqrt{125}} \\\\\\ (\stackrel{x_1}{15}~,~\stackrel{y_1}{15})\qquad (\stackrel{x_2}{30}~,~\stackrel{y_2}{9}) ~\hfill b=\sqrt{[ 30- 15]^2 + [ 9- 15]^2} \\\\\\ ~\hfill \boxed{b=\sqrt{261}}](https://tex.z-dn.net/?f=~%5Chfill%20%5Cstackrel%7B%5Ctextit%7B%5Clarge%20distance%20between%202%20points%7D%7D%7Bd%20%3D%20%5Csqrt%7B%28%20x_2-%20x_1%29%5E2%20%2B%20%28%20y_2-%20y_1%29%5E2%7D%7D~%5Chfill~%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%28%5Cstackrel%7Bx_1%7D%7B10%7D~%2C~%5Cstackrel%7By_1%7D%7B5%7D%29%5Cqquad%20%28%5Cstackrel%7Bx_2%7D%7B15%7D~%2C~%5Cstackrel%7By_2%7D%7B15%7D%29%20~%5Chfill%20a%3D%5Csqrt%7B%5B%2015-%2010%5D%5E2%20%2B%20%5B%2015-%205%5D%5E2%7D%20%5C%5C%5C%5C%5C%5C%20~%5Chfill%20%5Cboxed%7Ba%3D%5Csqrt%7B125%7D%7D%20%5C%5C%5C%5C%5C%5C%20%28%5Cstackrel%7Bx_1%7D%7B15%7D~%2C~%5Cstackrel%7By_1%7D%7B15%7D%29%5Cqquad%20%28%5Cstackrel%7Bx_2%7D%7B30%7D~%2C~%5Cstackrel%7By_2%7D%7B9%7D%29%20~%5Chfill%20b%3D%5Csqrt%7B%5B%2030-%2015%5D%5E2%20%2B%20%5B%209-%2015%5D%5E2%7D%20%5C%5C%5C%5C%5C%5C%20~%5Chfill%20%5Cboxed%7Bb%3D%5Csqrt%7B261%7D%7D)
![(\stackrel{x_1}{30}~,~\stackrel{y_1}{9})\qquad (\stackrel{x_2}{10}~,~\stackrel{y_2}{5}) ~\hfill c=\sqrt{[ 10- 30]^2 + [ 5- 9]^2} \\\\\\ ~\hfill \boxed{c=\sqrt{416}} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%28%5Cstackrel%7Bx_1%7D%7B30%7D~%2C~%5Cstackrel%7By_1%7D%7B9%7D%29%5Cqquad%20%28%5Cstackrel%7Bx_2%7D%7B10%7D~%2C~%5Cstackrel%7By_2%7D%7B5%7D%29%20~%5Chfill%20c%3D%5Csqrt%7B%5B%2010-%2030%5D%5E2%20%2B%20%5B%205-%209%5D%5E2%7D%20%5C%5C%5C%5C%5C%5C%20~%5Chfill%20%5Cboxed%7Bc%3D%5Csqrt%7B416%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\qquad \textit{Heron's area formula} \\\\ A=\sqrt{s(s-a)(s-b)(s-c)}\qquad \begin{cases} s=\frac{a+b+c}{2}\\[-0.5em] \hrulefill\\ a=\sqrt{125}\\ b=\sqrt{261}\\ c=\sqrt{416}\\ s\approx 23.87 \end{cases} \\\\\\ A\approx\sqrt{23.87(23.87-\sqrt{125})(23.87-\sqrt{261})(23.87-\sqrt{416})}\implies \boxed{A\approx 90}](https://tex.z-dn.net/?f=%5Cqquad%20%5Ctextit%7BHeron%27s%20area%20formula%7D%20%5C%5C%5C%5C%20A%3D%5Csqrt%7Bs%28s-a%29%28s-b%29%28s-c%29%7D%5Cqquad%20%5Cbegin%7Bcases%7D%20s%3D%5Cfrac%7Ba%2Bb%2Bc%7D%7B2%7D%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20a%3D%5Csqrt%7B125%7D%5C%5C%20b%3D%5Csqrt%7B261%7D%5C%5C%20c%3D%5Csqrt%7B416%7D%5C%5C%20s%5Capprox%2023.87%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5C%5C%20A%5Capprox%5Csqrt%7B23.87%2823.87-%5Csqrt%7B125%7D%29%2823.87-%5Csqrt%7B261%7D%29%2823.87-%5Csqrt%7B416%7D%29%7D%5Cimplies%20%5Cboxed%7BA%5Capprox%2090%7D)
Answer:
The relation is not a function
The domain is {1, 2, 3}
The range is {3, 4, 5}
Step-by-step explanation:
A relation of a set of ordered pairs x and y is a function if
- Every x has only one value of y
- x appears once in ordered pairs
<u><em>Examples:</em></u>
- The relation {(1, 2), (-2, 3), (4, 5)} is a function because every x has only one value of y (x = 1 has y = 2, x = -2 has y = 3, x = 4 has y = 5)
- The relation {(1, 2), (-2, 3), (1, 5)} is not a function because one x has two values of y (x = 1 has values of y = 2 and 5)
- The domain is the set of values of x
- The range is the set of values of y
Let us solve the question
∵ The relation = {(1, 3), (2, 3), (3, 4), (2, 5)}
∵ x = 1 has y = 3
∵ x = 2 has y = 3
∵ x = 3 has y = 4
∵ x = 2 has y = 5
→ One x appears twice in the ordered pairs
∵ x = 2 has y = 3 and 5
∴ The relation is not a function because one x has two values of y
∵ The domain is the set of values of x
∴ The domain = {1, 2, 3}
∵ The range is the set of values of y
∴ The range = {3, 4, 5}
Answer:
- reflection in x = 1
- translation up 2
Step-by-step explanation:
The orientation of B is the opposite of the orientation of A, so a reflection is involved. The smallest angle is at the bottom in both figures, and the largest angle is on the right in A and the left in B, so the reflection is left-right, rather than up-down.
The point midway between the largest angle vertices is on the vertical line x=1, so that line can be used for reflection. Reflecting A across that line will put its large-angle vertex at (3, 0), so a translation up 2 units is also needed.
The reflection on x=1 and translation up 2 can be done in either order.
_____
<em>Additional comment</em>
A combination of reflection and translation is called a "glide reflection." Our choice of x = 1 as the line of reflection takes care of any horizontal translation that would be required if a different vertical line were used. For example, reflection across the y-axis would require a subsequent translation up 2 and right 2.
Answer:
Step-by-step explanation:the answer is option A as 1 • 3 =3 and 3+4=7