Answer:
La deformación unitaria lineal experimentada por la barra es
.
Explanation:
De la Mecánica de Materiales sabemos que la deformación unitaria lineal es la razón de la variación de la longitud con respecto a su longitud inicial. Al asumirse que la variación longitudinal es muy pequeña con respecto a la longitud inicial, se puede utilizar la siguiente ecuación:
(Eq. 1)
Donde:
- Deformación unitaria, adimensional.
- Cambio longitudinal, medido en metros.
- Longitud inicial, medida en metros.
Si conocemos que
y
, entonces la deformación unitaria lineal es:


La deformación unitaria lineal experimentada por la barra es
.
Groundwater <span>Precipitation that sinks into the ground is called Groundwater.</span>
Answer:
0.32 m.
Explanation:
To solve this problem, we must recognise that:
1. At the maximum height, the velocity of the ball is zero.
2. When the velocity of the ball is 2.5 m/s above the ground, it is assumed that the potential energy and kinetic energy of the ball are the same.
With the above information in mind, we shall determine the height of the ball when it has a speed of 2.5 m/s. This can be obtained as follow:
Mass (m) = constant
Acceleration due to gravity (g) = 9.8 m/s²
Velocity (v) = 2.5 m/s
Height (h) =?
PE = KE
Recall:
PE = mgh
KE = ½mv²
Thus,
PE = KE
mgh = ½mv²
Cancel m from both side
gh = ½v²
9.8 × h = ½ × 2.5²
9.8 × h = ½ × 6.25
9.8 × h = 3.125
Divide both side by 9.8
h = 3.125 / 9.8
h = 0.32 m
Thus, the height of the ball when it has a speed of 2.5 m/s is 0.32 m.
Answer:
<h2>0.5 kg</h2>
Explanation:
The mass of the object can be found by using the formula

f is the force
a is the acceleration
From the question we have

We have the final answer as
<h3>0.5 kg</h3>
Hope this helps you