Answer:
showm
Explanation:
Consider a dipole having magnetic moment 'm' is placed in magnetic field
then the torque exerted by the field on the dipole is


Now to rotate the dipole in the field to its final position the work required to be done is




Minimum energy mB is for the case when m is anti parallel to B.
Minimum energy -mB is for the case when m is parallel to B.
Approximately 101 N air is in a column 1-cm2 in cross-section that extends from sea level to the top of the atmosphere
The basic level for determining height and depth on Earth is the sea level. The ocean's surface tends to seek the same level since it is one continuous body of water. However, the sea level is never fully level due to winds, currents, river discharges, and changes in gravity and temperature.
At the equator, the radius of the Earth at sea level is 6378.137 km (3963.191 mi). At the poles, it is 6,356.752 km (3,949.903 km), and on average, it is 6,371.001 km (3,958.756 mi). The elevation of the shoreline—the boundary between the ocean and the land—is referred to as sea level. Land that is higher than this altitude is above sea level, and land that is lower is below sea level.
To learn more about sea level please visit -
brainly.com/question/2113249
#SPJ4
A) According to the nebular theory, the Solar System formed from a huge gaseous nebula which at a certain point was perturbated. Atoms and molecules started colliding, forming planetesimals (a sort of big rocks). The planetesimals were attracted to each other by gravity, forming bigger warm almost spherical objects called protoplanets, which at the end cooled down forming planets.
Therefore the correct answer is "all of the above".
b) The planets closer to the Sun were (and still are) subject to higher temperatures, due to their close distance to the Sun. In these conditions, rocky materials undergo condensation, while iced gaseous materials undergo vaporization. In the outer parts of the Solar System temperatures are too low to allow these transformations.
The correct answer is again "all of the above".