The air pressure inside the balloon increases as the number of particles increases.
The magnitude of the magnetic field inside the solenoid is 3.4×10^(-4) T.
To find the answer, we need to know about the magnetic field inside the solenoid.
<h3>What's the expression of magnetic field inside a solenoid?</h3>
- Mathematically, the expression of magnetic field inside the solenoid= μ₀×n×I
- n = no. of turns per unit length and I = current through the solenoid
<h3>What's is the magnetic field inside the solenoid here?</h3>
- Here, n = 290/32cm or 290/0.32 = 906
I= 0.3 A
- So, Magnetic field= 4π×10^(-7)×906×0.3 = 3.4×10^(-4) T.
Thus, we can conclude that the magnitude of the magnetic field inside the solenoid is 3.4×10^(-4) T.
Learn more about the magnetic field inside the solenoid here:
brainly.com/question/22814970
#SPJ4
Using the metric units kilometer (km) and meter (m), as seen in the picture of the ladder method example. So, the answer would be 14km = 14000m
Answer:
160790 J
Explanation:
We can find the heat necessary for the ice to go from -20 degrees Celsius to 0 degrees Celsius:

Where
is the specific heat of ice, that is the amount of heat that must be supplied per unit mass to raise its temperature in a unit.

We must calculate the latent heat of fusion required for this ice mass to change to water:

Where H=334 J/g is the specific latent heat of fusion of water, that is the amount of energy needed per unit mass of a substance at its melting point to change from the solid to the liquid state.

Then we calculate the heat necessary for the water to go from 0 degrees Celsius to 20 degrees Celsius:

Where
is the specific heat of water, that is the amount of heat that must be supplied per unit mass to raise its temperature in a unit.

Finally the 3 results are added:

The work done by
along the given path <em>C</em> from <em>A</em> to <em>B</em> is given by the line integral,

I assume the path itself is a line segment, which can be parameterized by

with 0 ≤ <em>t</em> ≤ 1. Then the work performed by <em>F</em> along <em>C</em> is
![\displaystyle \int_0^1 \left(6x(t)^3\,\vec\imath-4y(t)\,\vec\jmath\right)\cdot\frac{\mathrm d}{\mathrm dt}\left[x(t)\,\vec\imath + y(t)\,\vec\jmath\right]\,\mathrm dt \\\\ = \int_0^1 (288(3t-1)^3-8(2t+5)) \,\mathrm dt = \boxed{312}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint_0%5E1%20%5Cleft%286x%28t%29%5E3%5C%2C%5Cvec%5Cimath-4y%28t%29%5C%2C%5Cvec%5Cjmath%5Cright%29%5Ccdot%5Cfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dt%7D%5Cleft%5Bx%28t%29%5C%2C%5Cvec%5Cimath%20%2B%20y%28t%29%5C%2C%5Cvec%5Cjmath%5Cright%5D%5C%2C%5Cmathrm%20dt%20%5C%5C%5C%5C%20%3D%20%5Cint_0%5E1%20%28288%283t-1%29%5E3-8%282t%2B5%29%29%20%5C%2C%5Cmathrm%20dt%20%3D%20%5Cboxed%7B312%7D)