1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
FrozenT [24]
3 years ago
10

How many grams of ice at 0°c will melt if 1.50 kj of heat are added? (the molar heat of fusion of water is 6.01 kj/mol.) 4.49 g

12.0 g 7.51 g 2.99 g?
Physics
2 answers:
faust18 [17]3 years ago
8 0

The correct answer is 4.49g

Nata [24]3 years ago
7 0
The computation would be:moles = mass/ Molar Mass, but we are looking for the mass, so rearranging, will give us: mass = moles x MM 
Q = moles x Hf 
Q = (mass/MM) x Hf 
mass = (Q x MM) / Hf 
= (1.50-kJ x 18.0-g/mol) / 6.01-kJ/mol 
=4.49 g H20 is the answer
You might be interested in
Help me plzzz I need answers
soldier1979 [14.2K]

Answer:

i think it is B

Explanation:

4 0
3 years ago
A small sphere has a harge of 9uC and other small sphere has a charge of 4uC.
Helga [31]

Answer:

Electrical force, F = 90 N

Explanation:

It is given that,

Charge on sphere 1, q_1=9\ \mu C=9\times 10^{-6}\ C

Charge on sphere 2, q_1=4\ \mu C=4\times 10^{-6}\ C

Distance between two spheres, d = 6 cm = 0.06 m

Let F is the electrical force between them. It is given by the formula of electric force which is directly proportional to the product of charges and inversely proportional to the square of distance between them such that,

F=k\dfrac{q_1q_2}{d^2}

F=9\times 10^9\times \dfrac{9\times 10^{-6}\times 4\times 10^{-6}}{(0.06)^2}

F = 90 N

So, the electrical force between them is 90 N. Hence, this is the required solution.

7 0
3 years ago
A 0.500 H inductor is connected in series with a 93 Ω resistor and an ac source. The voltage across the inductor is V = −(11.0V)
bezimeni [28]

Answer:

205 V

V_{R} = 2.05 V

Explanation:

L = Inductance in Henries, (H)  = 0.500 H

resistor is of 93 Ω so R = 93 Ω

The voltage across the inductor is

V_{L} = - IwLsin(wt)

w = 500 rad/s

IwL = 11.0 V

Current:

I = 11.0 V / wL

 = 11.0 V / 500 rad/s (0.500 H)

 = 11.0 / 250

I = 0.044 A

Now

V_{R} = IR

    = (0.044 A) (93 Ω)

V_{R} = 4.092 V

Deriving formula for voltage across the resistor

The derivative of sin is cos

V_{R} = V_{R} cos (wt)

Putting V_{R} = 4.092 V and w = 500 rad/s

V_{R} = V_{R} cos (wt)

    = (4.092 V) (cos(500 rad/s )t)

So the voltage across the resistor at 2.09 x 10-3 s is which means

t = 2.09 x 10⁻³

V_{R} = (4.092 V) (cos (500 rads/s)(2.09 x 10⁻³s))

    =  (4.092 V) (cos (500 rads/s)(0.00209))

    = (4.092 V) (cos(1.045))

    = (4.092 V)(0.501902)

    = 2.053783

V_{R} = 2.05 V

8 0
3 years ago
What does the Nucleolus do?
SCORPION-xisa [38]

Answer:

C

Explanation:

6 0
3 years ago
Read 2 more answers
The drag force on a falling coffee filter can be modeled as a linear function with respect to velocity, F⃗ D =−bv, where b is a
nordsb [41]

Newton's second law and graphical analysis allow us to find the correct answer for the measure of the constant b is:

    D) Stack several filters to change the mass measure the acceleration of the system.

Newton's second law establishes a relationship between the net force, the mass and the acceleration of the bodies.  

         ∑ F = m a

Where the bold letters indicate vectors, F is the force, m the mass and the acceleration of the body.

They indicate that the drag force on the filters is

         F = - b v

Where b is a positive constant that depends on the shape and area of ​​the filter and v is the speed of the filter.

Let's write Newton's second law.

         W - fr  = ma

         W -bv  = ma

         

In the experiment the students indicate that they can measure the position, velocity and acceleration of the body.

Based on the above, if we place several filter weights and measure their speed and acceleration in each case, we can make a graph of velocity versus acceleration, we can take the value of the constant b from the slope.

Let's analyze the different answers:

A) False. The constant b depends on the shape of the filter therefore it must be kept constant.

B) False. The constant depends on the area, so it must be kept constant.

C) May be. In this case, since we have the terminal velocity, the acceleration is zero, Newton's second law remains.

                    B v - W = 0

                    b = \frac{W}{v}  

The problem with the method is the difficulty of measuring the compression terminal velocity.

D) True. According to the discussion of the velocity versus acceleration. graph, the constant b is equal to the slope of the graph.

E) May be. The problem with this method is finding a reliable value for the terminal velocity.

In conclusion, using Newton's second law and graphical analysis we can find the correct answer for the measure of the constant b is:

 D) Stack several filters to change the mass measure the acceleration of the system.

Learn more here:  brainly.com/question/2441565

6 0
2 years ago
Other questions:
  • Where does a phase change occur
    14·2 answers
  • Answers n = 2 energy level to the n = 4 energy level has a __________ wavelength than the photon absorbed by an electron moving
    6·1 answer
  • Help me please !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
    15·2 answers
  • Which statement best explains that sound waves are pressure waves?
    6·2 answers
  • An object with a mass of 5.0 Kg has a force of 20.0 newtons applied to it. What is the resulting acceleration of the object?
    11·1 answer
  • A swimmer swims 1000 m in the pool in 8.6 minutes. What was the average speed of the swimmer in m/s?
    11·2 answers
  • A skydiver of mass m jumps from a hot air balloon and falls a distance d before reaching a terminal velocity of magnitude v . As
    15·1 answer
  • An object (even if it is not living) will resist a change in its state, either resting or in motion, this is called ____________
    6·2 answers
  • Got it never mind. The only reason I'm typing more is to fill out the required space
    8·1 answer
  • Why does liquid water boil away when exposed to the Martian atmosphere?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!