Answer:
Wave speed = Wavelength x Frequency
26 m/s = Wavelength x 49
Divide by 49 to find the wavelength:
The wavelength is approximately 0.53
Let me know if this helps!
Explanation:
Current output at the battery will be current of entire circuit, while the current through each bulb in the parallel circuit is the total current circuit.
So, current output through power supply is i and current through each component be
considering only three component.
Then in a parallel circuit

<span>Using conservation of energy and momentum you can solve this question. M_l = mass of linebacker
M_ h = mass of halfback
V_l = velocity of linebacker
V_h = velocity of halfback
So for conservation of momentum,
rho = mv
M_l x V_li + M_h x V_hi = M_l x V_lf + M_h x V_hf
For conservation of energy (kinetic)
E_k = 1/2mv^2/ 1/2mV_li^2 + 1/2mV_{hi}^2 = 1/2mV_{lf}^2 + 1/2mV_{hf}^2
Where i and h stand for initial and final values.
We are already told the masses, \[M_l = 110kg\] \[M_h = 85kg\] and the final velocities \[V_{fi} = 8.5ms^{-1}\] and \[V_{ih} = 7.2ms^{-1} </span>
Answer:
0.572 Hz
Explanation:
given,
length of simple pendulum, l = 0.76 m
mass of the bob, m = 365 g = 0.365 Kg
angle made from the vertical, = 12°
frequency, f = ?



f = 0.572 Hz
The frequency at which pendulum vibrates is equal to 0.572 Hz