Newton' 1st Law of Motion
A soccer ball will not move until a player kicks it
A bowling ball hits the pins sending the pins flying for a STRIKE!
Newton's 2nd Law of Motion
it takes less force to move a ping pong ball then a bowling ball.
f - ma
Newton's 3rd Law of Motion
a fireman turns on his house and is knocked backward
If air is let out of a balloon quickly, air pushes down & balloon goes up
You can make sure there's no change in volume by keeping
your gas in a sealed jar with no leaks. Then you can play with
the temperature and the pressure all you want, and you'll know
that the volume is constant.
For 'ideal' gases,
(pressure) times (volume) is proportional to (temperature).
And if volume is constant, then
(pressure) is proportional to (temperature) .
So if you increase the temperature from 110K to 235K,
the pressure increases to (235/110) of where it started.
(400 kPa) x (235/110) = 854.55 kPa. (rounded)
Obviously, choice-b is the right one, but
I don't know where the .46 came from.
Answer:
Explanation:
This problem can be solved by the following equation:
Where:
is the pressure difference between the two ends of the pipe
is the viscosity of oil
is the length of the pipe
is the Rate of flow of the fluid
is the diameter of the pipe
is the radius of the pipe
Soving for :
Finally:
Not 100% but i think it'll cause the earth to rotate slightly slower, its definitely not the last one though
D=Vot+1/2at^2
In this case, there is no initial y velocity so the term Vot=0 so d=1/2at^2
acceleration=acceleration due to gravity=-9.8m/s^2
It falls - 22cm or -0.22m
We have - 0.22=1/2(-9.8)t^2
t^2=(-0.44)/(-9.8)
t=sqrt[0.44/9.8]