A parachute is a device designed to generate a LOT of air resistance.
Parachutes do that very well in places where there's any air to work with.
There is no air on the Moon.
A large force is required to accelerate the mass of the bicycle and rider. Once the desired constant velocity is reached, a much smaller force is sufficient to overcome the ever-present frictional forces.
A "heating curve" is a graph that shows the temperature of the substance
against the amount of heat you put into it.
For most of the graph, as you'd expect, the temperature goes up as you
add heat, and it goes down as you take heat away. BUT ... While the
substance is changing state, its temperature doesn't change even though
you're putting heat in or taking heat out.
So that part of the graph is a horizontal line.
To solve the problem it is necessary to apply the concepts related to the conservation of energy through the heat transferred and the work done, as well as through the calculation of entropy due to heat and temperatra.
By definition we know that the change in entropy is given by
Where,
Q = Heat transfer
T = Temperature
On the other hand we know that by conserving energy the work done in a system is equal to the change in heat transferred, that is
According to the data given we have to,
PART A) The total change in entropy, would be given by the changes that exist in the source and sink, that is
On the other hand,
The total change of entropy would be,
Since the heat engine is not reversible.
PART B)
Work done by heat engine is given by
Therefore the work in the system is 100000Btu
1.) The object's Velocity
Faster it goes, more kinetic energy it has