Answer:

Explanation:
Given that the airplane starts from the rest (this is initial velocity equals to zero) and accelerates at a constant rate, position can be described like this:
where x is the position, t is the time a is the acceleration and
is initial velocity. In this way acceleration can be found.
.
Now we are able to found velocity at any time with the formula: 
Answer: Its A because i had the same question and it was a
Answer:
c
Explanation:
all the others r physical
Answer:
θ = 20.9 rad
Explanation:
In a blender after a short period of acceleration the blade is kept at a constant angular velocity, for which we can use the relationship
w = θ / t
θ = w t
if we know the value of the angular velocity we can find the angular position, we must remember that all the angles must be in radians
suppose that the angular velocity is w = 10 rpm, let us reduce to the SI system
w = 10 rpm 
= 1,047 rads
let's calculate
θ = 1,047 20
θ = 20.9 rad
Answer:
The possible thickness of the soap bubble = 
Explanation:
<u>Given:</u>
- Refractive index of the soap bubble,

- Wavelength of the light taken,

Let the thickness of the soap bubble be
.
It is given that the soap bubble appears very bright, it means, there is a constructive interference takes place.
For the constructive interference of light through a thin film ( soap bubble), the condition of constructive interference is given as:

where
is the order of constructive interference.
Since the soap bubble is appearing very bright, the order should be 0, as
order interference has maximum intensity.
Thus,

It is the possible thickness of the soap bubble.