1). the product of the two masses being gravitationally attracted to each other
2). the distance between their centers of mass
And that's IT. The gravitational force between them depends on
only those two things, nothing else.
Answer:
F n = 0.2 N
Explanation:
given,
you are exerting force of 10 N on the ball.
mass of the ball = 1 kg
acceleration due to gravity = 9.8 m/s²
normal force on the ball = ?
normal force is force exerted by the object to counteract the force from other object.
normal force acting on the ball will be
F n = F - mg
F n = 10 - 1 × 9.8
F n = 10 -9.8
F n = 0.2 N
Hence, normal force acting on the ball is equal to 0.2 N
Answer:
total number of electron in 1 litter is 3.34 ×
electron
Explanation:
given data
mass per mole = 18 g/mol
no of electron = 10
to find out
how many electron in 1 liter of water
solution
we know molecules per gram mole is 6.02 ×
molecules
no of moles is 1
so
total number of electron in water is = no of electron ×molecules per gram mole × no of moles
total number of electron in water is = 10 × 6.02 ×
× 1
total number of electron in water is = 6.02×
electron
and
we know
mass = density × volume ..........1
here we know density of water is 1000 kg/m
and volume = 1 litter = 1 ×
m³
mass of 1 litter = 1000 × 1 × 
mass = 1000 g
so
total number of electron in 1 litter = mass of 1 litter × 
total number of electron in 1 litter = 1000 × 
total number of electron in 1 litter is 3.34 ×
electron
The missing diagram is in the attachments.
Answer: X: positive Y: positive
Explanation: Electric field is a vector quantity, which means it can be represented by a vector arrow: the arrow points in the direction of electric field and its length represents the magnitude at a given location. There are another representation of the electric field called electric field lines, <u>in which the line points away from a positively charged source and towards a negatively charged source</u>. This occurs because it follows a pattern, where the lines points in the direction that a positive test charge would have if it is accelerating on the line.
Analyzing the diagram, it can be observed that the lines are pointing away from both of the charged objects. Therefore, both X and Y are <u>positively charged</u>.